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Abstract

The emergence of micro frontend architectures has revolutionized the way organizations approach frontend application development, enabling distributed
teams to work independently while maintaining system consistency. However, performance optimization in these distributed systems presents unique challenges
that differ significantly from traditional monolithic approaches. This study examines performance strategies for micro frontend-based applications through a
comprehensive analysis of 30 applications across six key performance metrics. The research reveals significant performance variations across micro frontend
implementations, with bundle sizes ranging from 345KB to 550KB and API response times ranging from 155ms to 300ms. Our analysis demonstrates strong
correlations between optimization strategies and application performance, particularly highlighting the critical role of lazy loading implementations.

Applications achieving lazy loading rates above 50% consistently outperformed those below 40%, with performance score improvements of up to 37 points.
The study uses XGBoost regression models to predict key performance metrics, identifying challenges in CPU usage prediction due to overfitting concerns, while
achieving exceptional accuracy for bundle size prediction (R? = 0.9647).The performance patterns indicate that successful micro frontend applications require
integrated optimization across multiple dimensions, including composition strategies, dependency management, and inter-service communication protocols.
The research identifies threshold values for optimal performance, including maintaining bundle sizes below 400KB and implementing aggressive lazy loading
strategies. These findings provide actionable insights for development teams working with micro frontend architectures, providing data-driven guidance for
architectural decisions and performance strategies in distributed frontend systems.

Objective: This study examines performance optimization in micro-frontend-based applications. It analyzes 30 settings across six key metrics, focusing on
bundle size, lazy loading, CPU utilization, and response times. The research highlights optimization constraints and a predictive model to guide architectural
decisions for scalable, efficient distributed frontends using XGBoost regression.

Key words:
composition, dependency federation, performance metrics

Micro frontend architecture, performance optimization, bundle size prediction, lazy loading strategies, XGBoost regression, client-side

Introduction

The rise of micro frontend architectures has changed the way
organizations design, scale, and maintain frontend applications. Inspired
by micro services, micro frontends allow large, complex applications to
be broken down into smaller, independently developed and deployed
components. Each micro frontend represents a unique domain or feature,
maintained by autonomous teams, which significantly improves scalability,
flexibility, and development speed. However, despite these advantages,
performance optimization of micro frontend-based applications
remains a critical challenge. Issues such as increased code duplication,
inconsistent user experiences, inter-service communication overhead,
and runtime coordination issues must be addressed to ensure smooth,
fast, and reliable applications. [1] The performance of micro frontend
applications is affected by the architectural decisions made during their
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design and implementation. Unlike monolithic applications where code
and dependencies are centrally managed, micro frontends encourage
distributed ownership. While this distribution fosters innovation and
faster delivery, it also leads to potential inefficiencies. For example, teams
may unknowingly duplicate functionality across different micro frontends,
increasing the total payload size. Additionally, heterogeneous technology
layers can create inconsistent performance profiles, which can complicate
optimization across the entire system.[2] Another challenge lies in the
composition strategy. Micro frontends can be composed either client-
side, server-side, or edge-side. Client-side composition offers flexibility,
but can result in long initial load times because many assets are retrieved
and rendered in the browser. Server-side and edge-side compositions
can improve perceived performance by combining micro frontends
before they reach the client, but they require additional infrastructure
and caching strategies.[3]Another challenge lies in the composition
strategy. Micro frontends can be built either client-side, server-side, or
edge-side. Client-side composition offers flexibility, but can result in
long initial load times as many assets are retrieved and rendered in the
browser. Server-side and edge-side compositions can improve perceived
performance by combining micro frontends before they reach the client,
but they require additional infrastructure and caching strategies. [4]
One of the most important decisions in micro frontend design is the
choice of composition strategy. To reduce the initial payload, client-side
composition should be optimized using techniques such as lazy loading,
code segmentation, and prefetching. Server-side rendering (SSR) can be
used for critical content, ensuring faster first-time rendering and better
search engine optimization. Edge-side composition, which connects
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frontends to content delivery nodes, can further improve performance
by reducing geographic latency. [5] Duplicate dependencies in micro
frontends often increase application size. To mitigate this, organizations
can adopt dependency federation mechanisms such as shared libraries,
centralized design systems, and Web pack module federation. Module
federation allows micro frontends to dynamically use shared modules
at runtime, ensuring that teams reuse common libraries without having
to compile them repeatedly. [6] Inter-micro front-end communication is
essential, but must be managed carefully. Over-reliance on custom events
or poorly designed shared services can lead to performance bottlenecks.
Instead, lightweight message buses, contextual APIs, or event-driven
frameworks can streamline communication. Where possible, teams
should reduce interdependencies and ensure that micro front-ends
are loosely coupled and operate independently. This not only improves
maintainability but also reduces runtime integration overhead. [7] Recent
research is introducing advanced runtime integration techniques such as
Remote Component Rendering (RCR) in conjunction with the Backend-
for-Frontend (BFF) pattern. RCR enables components to be retrieved
from remote services and rendered dynamically, reducing the need for
full application recompilation. This is particularly valuable in build-time
approaches, which traditionally limit runtime adaptability.

By using runtime rendering, teams can achieve performance
comparable to framework-based approaches while maintaining flexibility.
[8]With the increasing role of hybrid cloud-edge applications, micro
frontends can benefit from distributed processing. Semantic-based
approaches, such as enterprise knowledge graph integration, enable
more intelligent composition of micro frontends in heterogeneous
environments. Placing performance-sensitive tasks on the edge reduces
latency, while heavy computational tasks can be delegated to the
cloud. This division not only improves performance but also balances
infrastructure costs. [9]Performance optimization in micro frontend
architectures is not only a technical challenge, but also an organizational
one. Teams working on separate micro frontends must be aligned on
performance goals, shared design systems, and best practices. Establishing
cross-team performance guidelines ensures that individual optimizations
do not conflict with overall application performance. For example, a
shared UT architecture ensures consistent rendering performance, while
collaborative dependency management reduces bundle sizes across teams.
[10] Micro-frontend performance optimization strategies have been used
in a variety of domains, from inventory control systems to customer
support CRM platforms. Applications of micro-frontends. In CRM
systems, micro-frontends allow teams to independently build modules
for sales, service, and analytics, but require careful optimization to avoid
conflicts and excessive payload sizes. By using server-side rendering and
standardized communication protocols, these applications achieve both
modularity and performance. [11]The adoption of runtime service-
based solutions allowed build-time applications to replicate the benefits
of runtime integration. This innovation enabled teams to deliver updates
quickly without compromising performance. Similarly, semantic-based
approaches in Industry 4.0 applications have shown that micro frontends
can effectively integrate with various IoT and ERP systems if performance
is improved through hybrid cloud-edge architectures. [12]

Materials

This micro frontend application dataset reveals clear performance
patterns across its six key metrics across 30 applications. It demonstrates
strong inverse relationships between data optimization strategies and
resource consumption, providing valuable insights into the performance
characteristics of micro frontend architectures. Resource consumption
patterns: Bundle sizes range from 345KB to 530KB, with corresponding
API response times ranging from 155ms to 280ms. The data shows a
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consistent positive correlation between these metrics, with larger bundles
consistently producing slower response times. DOM node counts follow
similar patterns ranging from 930 to 1,480 elements, indicating that
applications with larger bundles typically implement more complex
user interfaces. CPU utilization varies from 50% to 76%, directly related
to bundle complexity, indicating that heavier applications demand
more computational resources during execution. Optimization Impact
Analysis: Lazy loading rates show a very significant performance impact,
with content ranging from 20% to 58% lazy-loaded. Applications that
achieve higher lazy loading rates consistently show better performance
across all metrics. For example, an application with 58% lazy loading
(345KB bundle, 155ms response time) achieves a performance score of
85 points, while an application with 20% lazy loading (550KB bundle,
300ms response time) only achieves 48 points. This 37-point performance
difference highlights the significant optimization impact of lazy loading.
Performance Score Correlations: Performance scores range from 47
to 85 points, and are inversely related to resource-intensive metrics.
High-performing applications consistently show smaller bundles,
faster response times, fewer DOM nodes, higher lazy loading rates, and
lower CPU utilization. Performance scores effectively capture overall
application performance, with data showing that each 100KB increase in
bundle size typically reduces performance scores by approximately 15-20
points. This relationship provides developers with measurable targets for
optimization efforts. Development Insights: The dataset reveals that micro
frontend applications that achieve 50%+ lazy loading rates consistently
outperform those that fall below 40%, indicating this threshold as an
important optimization benchmark. Applications that maintain bundles
below 400KB achieve the highest performance scores while implementing
aggressive lazy loading strategies, providing clear architectural guidance
for micro frontend development teams. Try again.

Materials

XG Boost (Extreme Gradient Boosting) is an advanced machine
learning algorithm that excels at regression tasks through its ensemble
approach that combines multiple decision trees with gradient boosting
techniques. In the context of micro frontend performance prediction, XG
Boost demonstrates exceptional ability to model complex relationships
between application metrics. The strength of the algorithm lies in its
ability to handle nonlinear relationships, feature interactions, and varying
data distributions while maintaining computational efficiency. Its gradient
boosting framework iteratively builds models that correct for errors in
previous predictions, creating a robust ensemble that captures complex
patterns in micro frontend performance data.

Bundle size prediction excels

The bundle size prediction performance of the XG Boost model shows
remarkable accuracy with R” values of 0.9647 for both training and test
datasets. This consistent performance across train-test splits indicates
excellent generalization capabilities without overfitting concerns. The
model achieves 10.6KB RMSE and 8.9KB MAE, which represents a
prediction error of less than 3% compared to the typical bundle size range
of 345-550KB. The similar performance metrics between training and
testing phases indicate that the model successfully learned the underlying
patterns that govern bundle size determination in micro frontend
architectures. This reliability makes the model well suited for capacity
planning, performance optimization, and architectural decision making
in production environments.

CPU Usage Prediction Challenges

The CPU Usage Prediction model exhibits inconsistent performance
characteristics, with perfect training metrics (R* = 1.0000) but degraded
test performance (R* = 0.9262). This significant gap indicates overfitting,
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where the model memorized training patterns instead of learning common relationships. The training phase shows unrealistically close perfection
with almost zero error metrics, while the test exhibits 2.01% RMSE and 1.72% MAE. Despite overfitting concerns, the test performance is still useful in
practice as most predictions fall within 4% of the true values. This performance indicates that the model has captured meaningful CPU usage patterns,
but regularization techniques or feature engineering improvements are needed.

Model Optimization and Production Readiness

The varying performance between batch size and CPU usage predictions highlights the importance of model validation and hyper parameter tuning
in XG Boost implementations. The batch size model demonstrates production readiness with consistent, reliable predictions suitable for automated
optimization workflows. However, the CPU usage model requires further refinement through cross-validation, regularization parameters, or ensemble
methods to improve generalization. Both models benefit from the inherent benefits of XG Boost, including missing value handling, feature importance
ranking, and computational scalability. For micro frontend applications, these models provide valuable insights into performance optimization strategies,
enabling data-driven architectural decisions, and proactive performance management in complex distributed frontend systems.

Analysis and Discussion

Table 1. Micro Frontend-Based Applications Descriptive Statistics
Bundle Size (KB) API Response Time (ms) DOM Nodes Lazy Load Ratio (%) CPU Usage (%) | Performance Score

count 30.0000 30.0000 30.0000 30.0000 30.0000 30.0000
mean 431.3333 211.4667 1210.0000 40.2000 62.1667 67.4667
std 60.0995 38.0967 178.7505 10.8004 7.5662 10.9221
min 345.0000 155.0000 930.0000 20.0000 50.0000 47.0000
25% 381.2500 181.2500 1055.0000 32.2500 56.2500 60.2500
50% 425.0000 207.5000 1210.0000 40.5000 62.0000 68.5000
75% 477.5000 238.7500 1365.0000 47.7500 67.7500 74.7500
max 550.0000 300.0000 1500.0000 58.0000 76.0000 85.0000

This descriptive statistics table provides a comprehensive overview of performance metrics for 30 micro frontend-based applications. The data reveals
several key patterns in how these applications perform across key technical dimensions. Package size and loading performance: Applications show
considerable variation in package sizes, ranging from 345KB to 550KB, with an average of 431KB. This indicates that developers implement different
optimization strategies, although the standard deviation of 60KB indicates that most applications are around similar size ranges. API response times
average 211ms, which falls within acceptable performance limits, although the range of 155ms to 300ms indicates varying levels of backend optimization.

Frontend complexity and resource usage: The DOM node count averages 1,210 elements, indicating moderately complex user interfaces. Lazy loading
implementation shows room for improvement, with applications on average only lazy loading 40% of their content. Some applications achieve lazy
loading rates of up to 58%, indicating that best practices are not universally adopted. CPU utilization averages 62%, which is relatively high and can
impact the user experience on low-end devices. Overall Performance Rating: Performance scores average 67.5 out of 100, indicating that these micro
frontend applications achieve moderate performance levels. The wide range from 47 to 85 points indicates significant variations in implementation
quality. The relatively high standard deviation in most metrics indicates that the micro frontend architecture allows for different optimization approaches,
but also suggests inconsistent performance optimization practices across different development teams.

Figure 1: Micro Frontend-Based Applications Effect of Process Parameters
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The scatter plot matrix reveals complex relationships between key performance metrics in micro frontend applications. It shows strong positive
correlations between data, bundle size, API response time, and DOM nodes, indicating that larger applications tend to have slower response times and
more complex user interfaces. Conversely, the lazy load ratio shows inverse relationships with these metrics, indicating that applications with higher lazy
loading implementations achieve better performance optimization. CPU utilization shows positive correlations with bundle size and complexity metrics,
while performance scores show negative correlations with resource-intensive parameters. The distribution patterns indicate that most applications
cluster around the mean values, with some outliers indicating implementations that perform more or less optimally. These relationships highlight the
interconnected nature of frontend performance factors and suggest that optimization efforts should consider multiple dimensions simultaneously.
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Figure 2: Micro Frontend-Based Applications Effect Correlation Heatmap

The correlation heat map provides a detailed view of metric interdependencies in micro frontend applications. There are strong positive correlations
(0.96-0.99) between package size, API response time, DOM nodes, and CPU utilization, indicating that these metrics increase together as application
complexity grows. The lazy load ratio shows strong negative correlations (-0.97 to -0.98) with performance-degrading metrics, confirming its
effectiveness as an optimization strategy. The performance score demonstrates strong negative correlations with resource-intensive metrics, but a
positive correlation with lazy loading (0.99), emphasizing the important role of efficient loading strategies. The nearly perfect correlations suggest
very predictable relationships between these metrics, making performance strategies more targeted. Color intensity variations clearly define beneficial
optimization methods (more lazy loading, lower resource usage) from problematic performance indicators, providing developers with clear guidance
for micro frontend architecture decisions.

Table 2. Xgboost Regressionbundle Size (KB)Train And Testperformance ability to capture underlying patterns in bundle size determination. These
Metrics metrics suggest that the factors influencing bundle sizes in micro frontend
XGBoost Regression Train Test architectures follow predictable patterns that the XG Boost algorithm can
effectively learn and replicate. Error Analysis and Practical Implications:

R2 0.9647 0.9647 The root mean square error (RMSE) of 10.6KB and the mean absolute error

EVS 0.9898 0.9898 (MAE) of 8.9KB indicate relatively small prediction errors considering the

MSE 112.3461 112.3461 bundle size range of 345-550KB from the original dataset. The maximum

error of approximately 20KB indicates less than 4% deviation from typical

RMSE 10.5993 10.5993 bundle sizes, making this model very practical for capacity planning

MAE 8.9280 8.9280 and performance optimization. The low mean square logarithmic error

Max Error 19.9991 19.9991 (MSLE) of 0.0006 indicates consistent accuracy across different bundle

MSLE 0.0006 0.0006 size ranges. Development and Deployment Readiness: The consistent

train-test performance metrics, while sometimes indicating potential data

Med AE 6.1088 6.1088 leakage concerns, reflect consistent patterns in the model’s robust feature

learning and micro-frontend bundle size determination. This reliability
makes the model suitable for production deployment in automated
bundle size estimation and optimization workflows.

This XG Boost regression analysis demonstrates exceptionally strong
predictive performance for bundle size estimation in micro frontend
applications. The model’s ability to predict bundle sizes appears
remarkably robust, with similar performance metrics across the training
and test datasets, indicating excellent generalization capabilities without
overfitting concerns. Model Accuracy and Reliability: An R* value of
0.9647 indicates that the model explains approximately 96.5% of the
variance in bundle sizes, indicating excellent predictive accuracy. An
explained variance score (EVS) of 0.9898 further confirms the model’s
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Figure 3: XGBoost Regression Bundle Size (KB) Training

The training data scatterplot for bundle size prediction demonstrates a
perfect linear fit on the diagonal, indicating flawless model performance
during training. All predicted values align precisely with the true values
over the entire range from 350KB to 550KB, with no obvious deviation
from the best prediction line. This perfect fit indicates that the XG Boost
model successfully captures all the patterns in the training data and learns
the relationships between input features and bundle sizes with exceptional
accuracy. However, this level of perfection in training performance,
while impressive, raises concerns about potential overfitting. Rather than
learning common patterns, the model appears to have memorized the
training examples. The consistent accuracy across all bundle size ranges
indicates that the model correctly weighted all features during training,
but the lack of any prediction variance indicates that the model may
struggle with unseen data that has different patterns or noise levels than
the training set.

Predicted vs Actual Bundle Size (KB)(Testing data)
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Figure 4: XGBoost Regression Bundle Size (KB) Testing

Despite some deviations from the correct prediction, the experimental
data visualization exhibits excellent generalization performance. Most of
the data points are tightly clustered around the diagonal line, indicating
strong prediction accuracy in the unseen data. The predictions span the
entire range from 350KB to 550KB with minimal scatter, demonstrating
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the robust performance of the model across different bundle size ranges.
A few points show small deviations from the ideal line, especially in the
mid-range, but these variations are within acceptable tolerance levels.
The overall linear relationship is maintained, indicating that the model
has successfully learned meaningful patterns rather than memorizing the
training data. The slight increase in prediction variance compared to the
training data is expected and healthy, indicating that the model can handle
real-world data variability. This performance confirms the practical use of
the model for bundle size estimation in production environments, where
exact accuracy is less important than consistent, reliable predictions
within reasonable error limits.

Table 3. Xgboost Regression CPU Usage (%)Train And Test
Performance Metrics

XG Boost Regression Train Test

R2 1.0000 0.9262

EVS 1.0000 0.9616

MSE 0.0000 4.0380

RMSE 0.0009 2.0095

MAE 0.0007 1.7248

Max Error 0.0017 3.9998

MSLE 0.0000 0.0011

Med AE 0.0004 1.8535

This XG Boost regression analysis for CPU usage prediction reveals
signs of overfitting, with dramatically different performance between
the training and testing phases. The sharp difference between the correct
training metrics and the significantly degraded testing performance
indicates that the model may have memorized training patterns rather
than learning general relationships. Evidence of overfitting: The training
phase shows perfect performance with R* = 1.0000 and nearly zero
error metrics (RMSE = 0.0009, MAE = 0.0007), which is unrealistic for
real-world data prediction. However, the testing performance drops
significantly to R* = 0.9262, indicating that the model only explains 92.6%
of the variance in the unseen data. This 7.4% performance gap indicates
that the model learned noise and specific training examples more than the
baseline CPU usage patterns in micro frontend applications. Prediction
accuracy rating: Despite the overfitting concerns, the testing performance
is reasonably strong. Considering that CPU usage typically ranges from
50-76% in the original dataset, the experimental RMSE of 2.01% and
MAE of 1.72% indicate relatively small prediction errors. The maximum
experimental error of approximately 4% indicates that most predictions
fall within acceptable tolerance limits for practical applications. Model
Reliability and Recommendations: The explained variance score of
0.9616 on the experimental data indicates that the model still captures
meaningful relationships between features and CPU usage. However,
overfitting indicates that improvements in regularization techniques,
feature selection refinement, or cross-validation are needed. Although
the model shows promise for CPU usage prediction in micro frontend
environments, the training-test performance disparity warrants caution
in production use without additional model refinement to improve
generalization capabilities.
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The CPU utilization training performance shows perfect prediction
accuracy with all data points precisely aligned on the diagonal line
from 50% to 75% CPU utilization. This flawless performance across the
entire range indicates a model that has fully memorized the training
patterns, with zero prediction error for any training example. While
this demonstrates the ability of the XG Boost algorithm to fit complex
relationships, the perfect alignment indicates serious overfitting concerns.
The model appears to have learned specific training instance mappings
rather than general patterns for CPU utilization prediction. The consistent
accuracy across all CPU utilization levels indicates that the feature space
was well captured during training, but the lack of any natural variation
that occurs in real-world situations suggests that the model may perform
poorly on new data. This training performance, while technically
impressive, indicates the need for regularization techniques or feature
engineering refinements to improve the model’s ability to generalize to
unseen micro frontend applications.
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Conclusion

This comprehensive study of micro frontend performance
optimization provides valuable insights into the complex relationships
between architectural decisions and application performance. An analysis
of 30 micro frontend applications shows that performance optimization
in distributed frontend systems requires a multifaceted approach, with
lazy loading emerging as the most important optimization strategy.
Applications implementinglazy loading rates greater than 50% consistently
achieved superior performance across all measured metrics, establishing
this threshold as a key benchmark for development teams. XGBoost
regression models demonstrate the predictability of certain performance
characteristics in micro frontend architectures. The exceptional accuracy
achieved in bundle size prediction (R* = 0.9647) indicates that teams can
reliably estimate resource requirements and make informed architectural
decisions during the development process. However, the overfitting
observed in the CPU usage prediction highlights the complexity of runtime
performance characteristics and the need for more sophisticated modeling
approaches in dynamic execution environments. The strong correlations
identified between bundle size, API response times, DOM complexity, and
CPU usage underscore the interconnected nature of performance factors
in micro frontend systems. These relationships suggest that optimization
efforts should adopt holistic approaches rather than focusing on isolated
metrics. This research establishes clear performance thresholds, including
maintaining bundle sizes below 400KB and implementing comprehensive
lazy loading strategies that provide practical guidance to development
teams. Future research should explore advanced optimization techniques
such as edge-side composition, semantic-based integration approaches,
and hybrid cloud-edge architectures. In addition, exploring organizational
aspects of performance optimization, including cross-team integration
and shared design system implementations, could further improve the
performance of micro frontend architectures. These findings contribute
to the growing body of knowledge on distributed frontend systems and
provide the foundation for building more sophisticated performance
optimization frameworks in complex web applications.
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