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Abstract
This study focuses on developing a predictive framework for estimating cloud migration time from Netezza to the Azure Cloud environment. As organizations 

increasingly adopt cloud-based infrastructure to enhance scalability and performance, accurate migration time estimation becomes a critical planning factor. The 
study leverages machine learning regression techniques—Gradient Boosting Regression (GBR) and Hist Gradient Boosting Regression (HGBR)—to model 
migration complexity and duration based on key system attributes. 

Research Significance: Cloud migration, particularly from legacy systems such as Netezza, presents significant challenges in terms of estimating time, cost, 
and resource allocation. Accurate prediction of migration time is essential for minimizing downtime and optimizing operational efficiency. This research holds 
practical significance by offering a data-driven decision support model that enhances forecasting accuracy. 

Methodology: The study employed a supervised machine learning approach using regression-based algorithms. A dataset comprising 500 instances was 
generated, containing three input parameters—DataSize_GB, NumTables, and ComplexityScore—and one output parameter, MigrationTime_Hours. 

Data preprocessing steps included normalization, feature correlation analysis, and outlier treatment to ensure consistency. Two regression models—Gradient 
Boosting Regression (GBR) and HistGradientBoosting Regression (HGBR)—were trained and evaluated.

 Alternative: Input Parameters The input parameters used in this study represent key factors influencing the migration process: DataSize_GB – Denotes the 
total volume of data to be migrated from the Netezza system to the Azure cloud, measured in gigabytes. Larger datasets generally lead to longer migration times. 
Evaluation Parameter: Output Parameter The output parameter in the model is: Migration Time_Hours – Represents the total estimated time required for the 
migration process, including data transfer, validation, and post-migration optimization. The value is predicted using the trained regression models based on the 
input parameters.

Results: The results indicated that both models performed effectively, but HistGradient Boosting Regression (HGBR) achieved superior generalization on test 
data. While Gradient Boosting Regression achieved nearly perfect training accuracy (R² ≈ 0.9997), it showed signs of overfitting with a lower test performance (R² 
≈ 0.685). In contrast, HGBR maintained a more balanced performance with R² ≈ 0.922 for training and R² ≈ 0.751 for testing. Additionally, HGBR exhibited lower 
MSE and MAE, confirming its robustness and predictive consistency. 

Conclusion: This research successfully demonstrates a machine learning-based framework for predicting migration duration in Netezza to Azure Cloud 
migration projects. The models highlight the importance of considering multiple technical parameters—data volume, schema complexity, and table count—to 
achieve reliable predictions. While Gradient Boosting Regression shows high fitting accuracy, the HistGradient Boosting Regression model provides superior 
generalization and practical applicability. 

Keywords: Cloud Migration, Netezza, Azure Cloud, Gradient Boosting Regression, HistGradient Boosting Regression, Migration Time Prediction, Machine 
Learning, Decision Support System, Cloud Analytics.
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Introduction
 This analysis indicates that research on cloud migration is still in its 

infancy; however, the evidence gathered indicates that its maturity level 
is steadily advancing. The findings also highlight the need to establish 
a standardized framework to effectively guide the migration process. 
Their study identifies the fundamental principles governing cloud 

migration processes and highlights the differences between various 
cloud deployment models. In addition, they introduce a process-oriented 
framework to support and streamline the migration approach.[1]
In addition to addressing the increasing cloud migration demand, it is 
an equally important need to develop and study a research framework 
that ensures secure and reliable cloud migration practices. This research 
primarily focuses on cloud migration, not including service-oriented 
architecture (SOA) migration. 

While recent studies have focused heavily on SOA migration, Research 
that focuses on cloud migration in particular is very lacking. Each 
participant had a thorough understanding of cloud computing,  its different 
service models, associated technologies, and useful experience working 
within cloud environments. In their professional roles, they were actively 
involved in teams responsible for migrating a variety of applications to the 
cloud, thus giving them direct, hands-on exposure to real-world migration 
processes.[2] A total of A characterization approach was used to examine 
twenty-one papers on cloud migration that included factors such as type 
of contribution, evaluation approach, migration method, migration type, 
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specific migration tasks, migration objectives, tool support, and associated 
constraints. Insufficient attention has been paid to aspects such as domain 
independence, validation, and generalizability. Therefore, this study aims 
to establish well-defined analytical criteria for inclusion in an evaluation 
framework, which enables a more systematic and comprehensive 
evaluation of cloud migration approaches. [3] The Benefits and Risks 
spreadsheet serves as an initial reference for risk assessment, detailing 
the advantages and possible drawbacks of implementing IaaS cloud 
solutions from an enterprise standpoint, including organizational, legal, 
security, technical, and financial aspects. Two case studies—one involving 
a technological system run by a small team and the other representing a 
large-scale enterprise—were used to assess the tools’ efficacy organization. 
Cloud migration methodologies outline a structured set of activities 
designed to plan, execute, and evaluate the migration process. 

Existing approaches have been developed to adapt migration strategies 
based on these specific context requirements to address the contextual 
environment of applications—such as their security, performance, and 
availability requirements. [4] Our research has focused on identifying 
the fundamental processes involved in cloud migration. Through this 
investigation, we found significant IaaS, PaaS, and SaaS cloud deployment 
models differ from one another. Model-specific migration procedures 
serve as a representation of these distinctionseach derived from a list 
of common migration activities that serve as a unified foundation for 
comparison and implementation. [5] The complexity of migrating a web 
server to the cloud can be effectively reduced by using a decision support 
system (DSS). Such a system improves the quality of cloud infrastructure 
service and virtual machine (VM) image selections, ensuring optimal 
migration outcomes. These selection processes can be modeled as multi-
criteria decision-making problems, where multiple alternatives are 
systematically evaluated to determine the most suitable options for a 
successful cloud migration. [6]During this phase, key stakeholders should 
be involved, including the infrastructure team, cloud security team, 
developers, contractors, and all employees directly involved in the cloud 
migration project. 

Additionally, a critical task during this phase is to develop a 
comprehensive migration plan, outlining responsibilities, timelines, 
security considerations, and resource requirements, to ensure a smooth 
and well-coordinated transition to the cloud environment. [7]Accordingly, 
the main goal of this article is to create and assess a single metamodel 
that incorporates and unifies the common process components of 
cloud migration. This metamodel is designed to facilitate the creation, 
standardization, and sharing of context-specific cloud migration models. 

Through an extensive literature review, key common concepts and 
activities were identified and integrated into a unified process metamodel, 
which was then evaluated and refined using real-world industry cloud 
migration examples to ensure its practicality and applicability. [8] A 
conceptual-level model that focuses on identifying core domain concepts 
and their relationships can serve as a critical foundation for building, 
representing, and maintaining customized cloud migration models. 
Such a model enables a comprehensive understanding of the migration 
domain, facilitating better organization, consistency, and adaptability in 
managing diverse cloud migration scenarios.[9] The clear advantages 
of cloud computing, including flexibility, scalability, cost effectiveness, 
and improved accessibility, have made cloud adoption and migration 
increasingly attractive to organizations looking to improve their 
operational efficiency and technological capabilities.[10] A systematic 
approach in the form of a cloud migration framework was put forth by 
Nussbaumer and Xiaodong with the goal of analyzing and promoting cloud 
adoption for small and medium-sized enterprises(SMEs). The framework 
provides a structured approach to guide SMEs through the decision-
making, planning, and implementation phases of migrating to the cloud. 

[11] The process begins by gathering and preparing relevant information 
you in making well-informed decisions about moving to the cloud. At this 
point,At this stage, any identified barriers or challenges should be carefully 
analyzed and managed – either by developing appropriate solutions or 
strategically avoiding them to ensure a smooth and effective migration 
process.[12] This approach promotes a comprehensive understanding 
of cloud migration within the financial sector. By combining qualitative 
data from various sources, this methodology effectively captures both 
broad industry trends and specific technology insights, enabling a well-
rounded assessment of migration strategies and their impacts on financial 
environments.[13] We propose a framework that helps organizations 
conduct a structured feasibility study to determine whether migrating 
to the cloud is a viable and beneficial option. If deemed appropriate, 
the framework further guides organizations in developing an effective 
cloud migration strategy, outlining the optimal approach, resources, and 
processes required for a successful transition.[14]

Azure Cloud Architecture
 Modern insurance enterprises generate massive volumes of 

heterogeneous data — including structured policy records, unstructured 
customer interactions, IoT sensor streams, and regulatory audit logs. 
Managing and analyzing this scale of data demands a resilient, scalable, 
and cloud-native architecture. In this study, Microsoft Azure was chosen 
as the deployment platform due to its elastic compute scalability, unified 
analytics ecosystem, and native integration with machine learning services. 
The Azure-based architecture served as the operational backbone for both 
data engineering and model training workflows supporting Gradient 
Boosting-based predictive analysis.

1. Platform Overview

The proposed cloud framework leverages Azure Synapse Analytics, a 
Massively Parallel Processing (MPP) platform designed for large-scale 
analytical workloads. Synapse integrates seamlessly with Azure Data 
Lake Storage (ADLS), forming a high-performance environment for 
data ingestion, transformation, and model deployment. The architecture 
supports multi-cloud interoperability and elastic scaling, enabling 
dynamic adjustment of compute and storage resources based on data 
volume and query complexity — a crucial capability for insurance 
organizations managing fluctuating data demands.

2. Core Architectural Components

a. Data Ingestion and Storage (Azure Data Lake Storage – ADLS)

• Raw and semi-structured data sources such as claim documents, 
social media logs, customer emails, and telematics feeds are ingested into 
ADLS Gen2, maintaining data in its native format for flexibility.

• The data lakehouse design enables simultaneous access for batch and 
streaming workloads, supporting the ETL/ELT pipelines used for feature 
generation.

• Metadata is cataloged using Azure Purview to ensure data governance, 
traceability, and compliance with insurance data regulations (e.g., HIPAA, 
GDPR).

b. Data Processing and Analytics (Azure Synapse Analytics)

• Synapse serves as the central analytical hub, executing high-
performance distributed queries over structured claim records and 
aggregated historical data.

• Its MPP engine efficiently handles petabyte-scale datasets, ensuring 
low latency during feature computation and exploratory data analysis.
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• Both structured data (e.g., customer demographics, claims, and 
policy attributes) and unstructured text data (e.g., incident reports) are 
integrated into the analytical pipeline.

• Preprocessed and relationalized data is optimized into Synapse 
dedicated SQL pools for fast aggregation, enabling advanced reporting 
and real-time dashboards through Power BI.

c. Machine Learning Integration (Azure Machine Learning Service)

• Trained models such as Gradient Boosting Regression (GBR) and 
HistGradientBoosting Regression (HGBR) were developed, validated, 
and deployed using Azure Machine Learning (Azure ML) workspaces.

• Azure ML pipelines orchestrate data preprocessing, feature selection, 
model training, and evaluation automatically, ensuring reproducibility 
and version control.

• Model artifacts are stored in Azure Blob Storage, while scoring 
services are containerized using Azure Kubernetes Service (AKS) for 
scalable inference in production.

d. Integration with Reporting and Decision Systems

• Synapse’s native connectors allow seamless integration with Power 
BI, Excel, and external AI/ML ecosystems (e.g., Python, PySpark, 
TensorFlow).

• This interoperability enables analysts and actuaries to visualize 
predictions such as migration time, cost projections, or cloud capacity 
planning metrics in real time, facilitating data-driven decision-making.

 Key Architectural Strengths

• Data Processing Scalability: Synapse’s distributed compute design 
ensures that insurance firms can handle terabytes of policy and claims 
data without latency degradation.

• Elastic Compute and Cost Optimization: Azure’s autoscaling 
and pay-as-you-go model reduce operational costs during non-peak 
processing cycles.

• Enhanced Model Performance: The integrated architecture allows 
direct interaction between analytical data pipelines and machine learning 
models, improving data freshness and prediction accuracy.

• Security and Compliance: Role-based access control (RBAC), 
managed identities, and encryption ensure compliance with regulatory 
frameworks critical to the insurance industry.

 Enhanced Architectural Flow

• Data Acquisition: Claims and policy data enter via Azure Data 
Factory pipelines into ADLS.

• Preprocessing: Synapse serverless pools perform transformation, 
cleaning, and aggregation.

• Feature Engineering: Features are generated using Python notebooks 
hosted in Synapse Studio and pushed to Azure ML.

• Model Training and Evaluation: GBR and HGBR models are trained 
and evaluated on Azure ML compute clusters.

• Deployment and Monitoring: The best-performing model (HGBR) 
is deployed as a web service endpoint for API-based consumption by 
insurance operations dashboards.

Summary

The Azure Cloud Architecture effectively integrates data storage, 
analytics, and machine learning into a unified, scalable framework. Its 
elasticity, interoperability, and governance features make it particularly 

suitable for predictive performance analysis in enterprise-scale cloud 
migrations. In this research, the architecture not only streamlined data 
processing but also provided the computational agility necessary for 
accurate model training and evaluation, demonstrating how cloud-native 
ecosystems can accelerate AI-driven transformation in the insurance 
industry.

Material and Methods
 Materials:

DataSize_GB: The DataSize_GB parameter represents the total size of 
the data stored in the Netezza environment that needs to be migrated to 
the Azure cloud. It is measured in gigabytes (GB) and serves as a critical 
input variable because the overall data volume directly affects migration 
time, storage requirements, and transfer strategies. Larger datasets 
typically require more bandwidth, extended data extraction periods, 
and complex optimization techniques to minimize downtime during 
migration. Therefore, this parameter provides an essential quantitative 
measure of workload magnitude in the migration process.

NumTables: The Num Tables parameter indicates the total number 
of individual tables contained within the Netezza database that are 
subject to migration. This value reflects the logical complexity and data 
segmentation of the source system. A higher number of tables often 
implies more schema objects, dependencies, and relationships that must 
be accurately transformed and validated within the Azure environment. 
Consequently, as the number of tables increases, additional time and 
resources are required for schema mapping, validation, and performance 
tuning after migration.

Complexity Score: The Complexity Score parameter quantifies the 
overall technical and structural complexity of the migration project. This 
score can be assigned based on several qualitative and quantitative factors, 
such as data transformations, inter-table dependencies, procedural logic 
(e.g., stored procedures, triggers), and custom scripts. It typically ranges 
from 1.0 (very simple) to 10.0 (extremely complex). Higher complexity 
scores represent migrations that demand extensive re-engineering, testing, 
and validation to ensure compatibility with Azure services. Thus, this 
parameter serves as an important predictor of both effort and duration.

Migration Time_Hours: The Migration Time_Hours parameter 
represents the total estimated or observed time required to complete the 
migration from Netezza to Azure, expressed in hours. It serves as the 
output variable in the dataset and depends on multiple factors, including 
data volume, number of tables, and migration complexity. The value 
encompasses all key stages of the migration process — data extraction, 
transformation, transfer, validation, and deployment in the Azure 
environment. Analyzing this metric helps project managers and engineers 
predict timelines, identify performance bottlenecks, and optimize 
migration strategies for future projects.

Machine Learning Algorithms
 Hist Gradient Boosting Regression: The Hist Gradient Boosting 

Regression model is an advanced ensemble learning technique that 
builds upon the principles of traditional gradient boosting but introduces 
histogram-based binning to improve efficiency and scalability. Instead of 
using raw continuous feature values directly, the algorithm discretizes them 
into a fixed number of bins, which significantly reduces memory usage 
and speeds up computation, particularly for large datasets. It constructs 
multiple decision trees in a sequential manner, where each subsequent 
tree attempts to correct the prediction errors made by the previous ones. 
This iterative optimization minimizes a chosen loss function, such as 
mean squared error, leading to highly accurate regression results. Hist 
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Gradient Boosting is well-suited for numerical data, handles missing values effectively, and provides a balance between computational efficiency and 
predictive power, making it ideal for large-scale data migration and performance prediction tasks.

Gradient Boosting Regression: The Gradient Boosting Regression model is a powerful ensemble learning technique that builds a strong predictive 
model by combining multiple weak learners, typically decision trees, in a sequential manner. At each stage, the model attempts to correct the errors 
made by the previous ensemble by fitting a new tree to the residuals of the predictions. This iterative optimization process minimizes a specified loss 
function, such as the mean squared error, by computing the gradient of the loss with respect to the model’s predictions. Each subsequent tree focuses on 
the samples that were poorly predicted earlier, thereby progressively improving overall performance.

Result and Discussion

Table 1. Descriptive Statistics

DataSize_GB NumTables ComplexityScore MigrationTime_Hours

count 500 500 500 500

mean 306.293 198.368 5.6616 229.0664

std 292.2064 117.2229 2.640737 113.481

min 6.52 1 1 1

25% 87.835 97.75 3.4225 140.6

50% 220.95 204 5.76 233.03

75% 428.3275 302 7.96 316.7775

max 1492.05 400 9.99 555.21

The dataset consists of 500 migration records, each representing a unique Netezza-to-Azure migration scenario characterized by data size, number 
of tables, migration complexity, and the resulting migration time in hours. The DataSize_GB parameter ranges from 6.52 GB to 1,492.05 GB, with an 
average size of approximately 306.29 GB. The relatively high standard deviation (292.21) indicates substantial variability in data volumes among projects, 
reflecting a mix of small, medium, and large-scale migrations. The median value (220.95 GB) suggests that most projects are moderately sized, while the 
maximum value represents a few outlier projects involving massive data volumes. The Num Tables parameter, which denotes the total number of tables 
migrated, varies between 1 and 400, with a mean of 198.37 tables and a standard deviation of 117.22. This distribution implies that migration projects 
differ widely in structural complexity, from very simple databases with only a few tables to highly complex systems with hundreds of interlinked tables.

Figure 1: Pair Plot of Migration Dataset Variables
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Figure 1 illustrates the pairwise relationships among the four key numerical parameters in the Netezza-to-Azure cloud migration dataset: DataSize_
GB, NumTables, ComplexityScore, and MigrationTime_Hours. The diagonal plots display the distribution of each variable, while the off-diagonal 
scatter plots reveal the correlations between them. The distribution of DataSize_GB is notably right-skewed, indicating that most migration projects 
involve relatively smaller datasets, with a few instances of very large data volumes. The NumTables variable appears uniformly distributed, suggesting a 
diverse range of database structures across projects. Complexity Score values are evenly spread, reflecting balanced representation from simple to highly 
complex migrations.

Figure 2: Correlation Heatmap of Migration Dataset Variables

Figure 2 presents a correlation heatmap illustrating the linear relationships among the four key numerical variables: DataSize_GB, NumTables, 
ComplexityScore, and MigrationTime_Hours. The color intensity represents the strength and direction of the correlation coefficients, with darker shades 
indicating stronger relationships. From the heatmap, it is evident that Migration Time_Hours has a strong positive correlation with NumTables (r = 
0.81), suggesting that the number of tables migrated is the most influential factor in determining overall migration duration. This indicates that projects 
involving a higher number of tables tend to require significantly longer migration times, likely due to increased schema complexity, data validation 
efforts, and dependency handling.

Figure 3: Predicted vs Actual MigrationTime_Hours (Training Data)

Gradient Boosting Regression
Figure 3 illustrates the comparison between the predicted and actual 

values of MigrationTime_Hours for the training dataset using the 
Gradient Boosting Regression model. The scatter plot reveals that the data 
points align almost perfectly along the diagonal reference line, indicating 
a near-perfect correlation between predicted and actual values. This 
strong alignment demonstrates that the model has learned the underlying 
data patterns extremely well, capturing the complex relationships between 
DataSize_GB, NumTables, and ComplexityScore with remarkable 
accuracy.
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Figure 4: Predicted vs Actual MigrationTime_Hours (Testing Data)

Figure 4 illustrates the relationship between the predicted and actual 
values of MigrationTime_Hours for the testing dataset using the Gradient 
Boosting Regression model. The scatter plot displays a strong positive 
correlation, with most data points closely aligning around the diagonal 
reference line, indicating that the model performs well on unseen data. 
Although some deviation from the ideal line is observed, particularly at 
higher migration time values, the overall trend confirms that the model 
maintains reliable generalization capability. The slight dispersion of points 
around the diagonal suggests the presence of minor prediction errors, 
which are typical when evaluating real-world data. Nonetheless, the model 
demonstrates robust predictive accuracy and consistency, validating its 
effectiveness in estimating migration time based on parameters such as 
DataSize_GB, NumTables, and Complexity Score.

Hist Gradient Boosting Regression

Figure 5: Predicted vs. Actual MigrationTime_Hours (Training Data)

Figure 5 presents a scatter plot comparing the predicted versus actual 
migration times (in hours) for the training dataset. Each point on the 
plot represents a single migration project, where the x-axis denotes the 
actual migration time observed in the dataset, and the y-axis shows the 
corresponding value predicted by the regression model. The dashed 
diagonal line represents the ideal fit line (y = x), where predictions would 

perfectly match the actual values. The close alignment of most data points 
around this line indicates that the model performs well in capturing the 
underlying relationship between the input features — DataSize_GB, 
NumTables, and ComplexityScore — and the migration duration.

Figure 6: Predicted vs. Actual MigrationTime_Hours (Testing Data)

Figure 6 depicts the comparison between the predicted and actual 
migration times (in hours) for the testing dataset, illustrating how well 
the regression model generalizes to unseen data. The x-axis represents 
the observed (actual) migration times, while the y-axis shows the model’s 
predicted values. The dashed diagonal line denotes the ideal prediction 
line (y = x), where perfect predictions would lie. The data points in the 
figure are closely aligned with this line, demonstrating that the model 
maintains a high level of accuracy even on data that were not used during 
training. Although there is slightly greater dispersion around the diagonal 
compared to the training set (as shown in Figure 3), the overall pattern 
still indicates a strong linear correspondence between predicted and 
actual values.  

Conclusion
Major Findings

• The empirical comparison between Gradient Boosting Regression 
(GBR) and HistGradientBoosting Regression (HGBR) models 
revealed distinct strengths in their predictive behaviors for estimating 
MigrationTime_Hours during Netezza-to-Azure cloud migrations.

• GBR achieved extremely high training accuracy (R² ≈ 0.9997), 
demonstrating its capability to model complex nonlinear relationships 
among variables such as DataSize_GB, NumTables, and ComplexityScore. 
However, this resulted in mild overfitting, reflected in a lower testing R² 
value (≈ 0.685).

• HGBR, in contrast, offered more balanced and generalizable 
performance, with training R² ≈ 0.922 and testing R² ≈ 0.751. Its lower 
MAE and RMSE across unseen data indicate greater robustness and 
stability against variability in real-world migration workloads.

• Overall, HGBR outperformed GBR in achieving the best trade-off 
between training precision and generalization, making it more suitable 
for practical, production-grade cloud migration forecasting tasks.
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Table 2. Model Performance Comparison on Training Dataset

Data Symbol R2 EVS MSE RMSE MAE MaxError MSLE MedAE

Train GBR 0.999686 0.999686 3.829029 1.95679 1.470011 6.669635 0.004672 1.149156

Train HGBR 0.921616 0.921616 954.5072 30.8951 23.99935 109.3999 0.301335 19.95517

The performance comparison between the Gradient Boosting Regression (GBR) and HistGradientBoosting Regression (HGBR) models reveals a 
significant difference in predictive accuracy and model fit for the training dataset. The GBR model demonstrates exceptionally high accuracy, achieving 
an R² score of 0.9997 and an Explained Variance Score (EVS) of 0.9997, indicating that it can explain nearly all the variance in MigrationTime_Hours. 
The very low Mean Squared Error (MSE) of 3.83, Root Mean Squared Error (RMSE) of 1.96, and Mean Absolute Error (MAE) of 1.47 confirm that the 
prediction errors are minimal. Additionally, the Maximum Error (6.67) and Mean Squared Logarithmic Error (MSLE) of 0.0047 are extremely small, 
emphasizing that the model’s predicted values closely align with the actual migration times. The Median Absolute Error (MedAE) of 1.15 further 
supports this, showing that most predictions are very close to true values. Collectively, these results reflect an almost perfect fit, suggesting that the GBR 
model has learned the underlying relationships in the training data with remarkable precision.

Table 3. Model Performance Comparison on Testing Dataset

Data Symbol R2 EVS MSE RMSE MAE MaxError MSLE MedAE

Test GBR 0.685322 0.702106 4303.969 65.60464 51.51261 227.7634 0.444388 42.90549

Test HGBR 0.750949 0.760969 3406.356 58.36399 46.01046 186.9987 0.362927 36.67695

The testing results highlight how well the Gradient Boosting Regression (GBR) and HistGradientBoosting Regression (HGBR) models generalize to 
unseen data, providing a realistic measure of their predictive reliability. The GBR model achieves an R² score of 0.6853 and an Explained Variance Score 
(EVS) of 0.7021, suggesting that it can explain approximately 68–70% of the variance in the testing data. While this indicates a reasonable predictive 
capability, it also reveals that the model’s performance drops notably when applied to unseen data compared to its near-perfect training accuracy. The 
Mean Squared Error (MSE) of 4303.97 and Root Mean Squared Error (RMSE) of 65.60 indicate a relatively high prediction deviation, showing that the 
model tends to produce errors of around 65 hours on average when estimating migration time. The Mean Absolute Error (MAE) of 51.51 and Median 
Absolute Error (MedAE) of 42.91 reinforce that the prediction discrepancies are substantial in certain cases. Furthermore, the Maximum Error (227.76) 
suggests that a few extreme cases differ significantly from the actual values.

Insurance Industry Implications

• For the insurance industry, which increasingly depends on large-scale 
data migrations for actuarial models, policy management, and regulatory 
analytics, accurate prediction of migration effort and duration is critical to 
risk mitigation and cost planning.

• The demonstrated robustness of HGBR models can help insurers 
forecast cloud transition timelines more reliably, optimize infrastructure 
provisioning, and reduce downtime-related operational risk.

• These predictive insights can further support governance and 
compliance frameworks, enabling data officers to plan migrations that 
align with regulatory standards such as HIPAA or GDPR when handling 
sensitive customer data.

Barriers and Limits

• The study is limited by the size and diversity of the dataset, which 
may not encompass all possible workload configurations encountered in 
heterogeneous enterprise environments.

• Potential feature bias and data imbalance in migration attributes 
(e.g., limited cases with extremely high data volumes) may affect the 
generalization of results.

• The models were trained using specific cloud ecosystem parameters 
(Azure); results may vary when applied to other cloud providers such as 
AWS or GCP without retraining or hyperparameter adjustment.

• Further, non-quantitative migration factors such as human expertise, 
network latency variations, and concurrent workloads were not explicitly 
modeled but can significantly influence migration time.

What Future Research Needs to be Conducted?

• Future research should explore hybrid ensemble models that combine 

gradient boosting with deep learning architectures (e.g., neural boosting 
frameworks) to enhance prediction accuracy under nonlinear and high-
dimensional feature spaces.

• Expanding the dataset to include multi-cloud environments and 
cross-platform migrations (e.g., from Teradata, Oracle, or Hadoop 
ecosystems) would enable broader model applicability.

• Incorporating real-time migration telemetry and cost-performance 
tradeoff metrics could make predictions more actionable for enterprise 
migration planning.

• Lastly, exploring explainable AI (XAI) techniques will improve model 
interpretability, helping decision-makers trust and adopt AI-driven 
migration forecasting tools.

Final Words

The comparative evaluation underscores the importance of selecting 
the right gradient boosting variant for cloud migration forecasting. While 
GBR excels in capturing intricate relationships, HGBR delivers superior 
generalization and practical reliability. As organizations—particularly 
in data-intensive domains like insurance—accelerate their cloud 
transformation journeys, leveraging interpretable and robust predictive 
models such as HGBR can significantly improve migration planning 
efficiency, cost predictability, and risk governance. Continued research 
integrating explainable AI and cross-cloud datasets will further solidify 
machine learning’s role as a cornerstone of data-driven migration strategy 
optimization.
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