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Abstract

This study focuses on developing a predictive framework for estimating cloud migration time from Netezza to the Azure Cloud environment. As organizations
increasingly adopt cloud-based infrastructure to enhance scalability and performance, accurate migration time estimation becomes a critical planning factor. The
study leverages machine learning regression techniques—Gradient Boosting Regression (GBR) and Hist Gradient Boosting Regression (HGBR)—to model
migration complexity and duration based on key system attributes.

Research Significance: Cloud migration, particularly from legacy systems such as Netezza, presents significant challenges in terms of estimating time, cost,
and resource allocation. Accurate prediction of migration time is essential for minimizing downtime and optimizing operational efficiency. This research holds
practical significance by offering a data-driven decision support model that enhances forecasting accuracy.

Methodology: The study employed a supervised machine learning approach using regression-based algorithms. A dataset comprising 500 instances was
generated, containing three input parameters—DataSize GB, NumTables, and ComplexityScore—and one output parameter, MigrationTime Hours.

Data preprocessing steps included normalization, feature correlation analysis, and outlier treatment to ensure consistency. Two regression models—Gradient
Boosting Regression (GBR) and HistGradientBoosting Regression (HGBR)—were trained and evaluated.

Alternative: Input Parameters The input parameters used in this study represent key factors influencing the migration process: DataSize GB — Denotes the
total volume of data to be migrated from the Netezza system to the Azure cloud, measured in gigabytes. Larger datasets generally lead to longer migration times.
Evaluation Parameter: Output Parameter The output parameter in the model is: Migration Time Hours — Represents the total estimated time required for the
migration process, including data transfer, validation, and post-migration optimization. The value is predicted using the trained regression models based on the
input parameters.

Results: The results indicated that both models performed effectively, but HistGradient Boosting Regression (HGBR) achieved superior generalization on test
data. While Gradient Boosting Regression achieved nearly perfect training accuracy (R? = 0.9997), it showed signs of overfitting with a lower test performance (R*
~0.685). In contrast, HGBR maintained a more balanced performance with R? ~ 0.922 for training and R* ~ 0.751 for testing. Additionally, HGBR exhibited lower
MSE and MAE, confirming its robustness and predictive consistency.

Conclusion: This research successfully demonstrates a machine learning-based framework for predicting migration duration in Netezza to Azure Cloud
migration projects. The models highlight the importance of considering multiple technical parameters—data volume, schema complexity, and table count—to
achieve reliable predictions. While Gradient Boosting Regression shows high fitting accuracy, the HistGradient Boosting Regression model provides superior
generalization and practical applicability.

Keywords: Cloud Migration, Netezza, Azure Cloud, Gradient Boosting Regression, HistGradient Boosting Regression, Migration Time Prediction, Machine

Learning, Decision Support System, Cloud Analytics.

Introduction

This analysis indicates that research on cloud migration is still in its
infancy; however, the evidence gathered indicates that its maturity level
is steadily advancing. The findings also highlight the need to establish
a standardized framework to effectively guide the migration process.
Their study identifies the fundamental principles governing cloud
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migration processes and highlights the differences between various
cloud deployment models. In addition, they introduce a process-oriented
framework to support and streamline the migration approach.[1]
In addition to addressing the increasing cloud migration demand, it is
an equally important need to develop and study a research framework
that ensures secure and reliable cloud migration practices. This research
primarily focuses on cloud migration, not including service-oriented
architecture (SOA) migration.

While recent studies have focused heavily on SOA migration, Research
that focuses on cloud migration in particular is very lacking. Each
participant had a thorough understanding of cloud computing, its different
service models, associated technologies, and useful experience working
within cloud environments. In their professional roles, they were actively
involved in teams responsible for migrating a variety of applications to the
cloud, thus giving them direct, hands-on exposure to real-world migration
processes.[2] A total of A characterization approach was used to examine
twenty-one papers on cloud migration that included factors such as type
of contribution, evaluation approach, migration method, migration type,
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specific migration tasks, migration objectives, tool support, and associated
constraints. Insufficient attention has been paid to aspects such as domain
independence, validation, and generalizability. Therefore, this study aims
to establish well-defined analytical criteria for inclusion in an evaluation
framework, which enables a more systematic and comprehensive
evaluation of cloud migration approaches. [3] The Benefits and Risks
spreadsheet serves as an initial reference for risk assessment, detailing
the advantages and possible drawbacks of implementing IaaS cloud
solutions from an enterprise standpoint, including organizational, legal,
security, technical, and financial aspects. Two case studies—one involving
a technological system run by a small team and the other representing a
large-scale enterprise—were used to assess the tools’ efficacy organization.
Cloud migration methodologies outline a structured set of activities
designed to plan, execute, and evaluate the migration process.

Existing approaches have been developed to adapt migration strategies
based on these specific context requirements to address the contextual
environment of applications—such as their security, performance, and
availability requirements. [4] Our research has focused on identifying
the fundamental processes involved in cloud migration. Through this
investigation, we found significant Iaa$, Paa$, and Saa$ cloud deployment
models differ from one another. Model-specific migration procedures
serve as a representation of these distinctionseach derived from a list
of common migration activities that serve as a unified foundation for
comparison and implementation. [5] The complexity of migrating a web
server to the cloud can be effectively reduced by using a decision support
system (DSS). Such a system improves the quality of cloud infrastructure
service and virtual machine (VM) image selections, ensuring optimal
migration outcomes. These selection processes can be modeled as multi-
criteria decision-making problems, where multiple alternatives are
systematically evaluated to determine the most suitable options for a
successful cloud migration. [6]During this phase, key stakeholders should
be involved, including the infrastructure team, cloud security team,
developers, contractors, and all employees directly involved in the cloud
migration project.

Additionally, a critical task during this phase is to develop a
comprehensive migration plan, outlining responsibilities, timelines,
security considerations, and resource requirements, to ensure a smooth
and well-coordinated transition to the cloud environment. [7] Accordingly,
the main goal of this article is to create and assess a single metamodel
that incorporates and unifies the common process components of
cloud migration. This metamodel is designed to facilitate the creation,
standardization, and sharing of context-specific cloud migration models.

Through an extensive literature review, key common concepts and
activities were identified and integrated into a unified process metamodel,
which was then evaluated and refined using real-world industry cloud
migration examples to ensure its practicality and applicability. [8] A
conceptual-level model that focuses on identifying core domain concepts
and their relationships can serve as a critical foundation for building,
representing, and maintaining customized cloud migration models.
Such a model enables a comprehensive understanding of the migration
domain, facilitating better organization, consistency, and adaptability in
managing diverse cloud migration scenarios.[9] The clear advantages
of cloud computing, including flexibility, scalability, cost effectiveness,
and improved accessibility, have made cloud adoption and migration
increasingly attractive to organizations looking to improve their
operational efficiency and technological capabilities.[10] A systematic
approach in the form of a cloud migration framework was put forth by
Nussbaumer and Xiaodong with the goal of analyzing and promoting cloud
adoption for small and medium-sized enterprises(SMEs). The framework
provides a structured approach to guide SMEs through the decision-
making, planning, and implementation phases of migrating to the cloud.

© Rajender. R. at al.

[11] The process begins by gathering and preparing relevant information
you in making well-informed decisions about moving to the cloud. At this
point,At this stage, any identified barriers or challenges should be carefully
analyzed and managed - either by developing appropriate solutions or
strategically avoiding them to ensure a smooth and effective migration
process.[12] This approach promotes a comprehensive understanding
of cloud migration within the financial sector. By combining qualitative
data from various sources, this methodology effectively captures both
broad industry trends and specific technology insights, enabling a well-
rounded assessment of migration strategies and their impacts on financial
environments.[13] We propose a framework that helps organizations
conduct a structured feasibility study to determine whether migrating
to the cloud is a viable and beneficial option. If deemed appropriate,
the framework further guides organizations in developing an effective
cloud migration strategy, outlining the optimal approach, resources, and
processes required for a successful transition.[14]

Azure Cloud Architecture

Modern insurance enterprises generate massive volumes of
heterogeneous data — including structured policy records, unstructured
customer interactions, IoT sensor streams, and regulatory audit logs.
Managing and analyzing this scale of data demands a resilient, scalable,
and cloud-native architecture. In this study, Microsoft Azure was chosen
as the deployment platform due to its elastic compute scalability, unified
analytics ecosystem, and native integration with machine learning services.
The Azure-based architecture served as the operational backbone for both
data engineering and model training workflows supporting Gradient
Boosting-based predictive analysis.

1. Platform Overview

The proposed cloud framework leverages Azure Synapse Analytics, a
Massively Parallel Processing (MPP) platform designed for large-scale
analytical workloads. Synapse integrates seamlessly with Azure Data
Lake Storage (ADLS), forming a high-performance environment for
data ingestion, transformation, and model deployment. The architecture
supports multi-cloud interoperability and elastic scaling, enabling
dynamic adjustment of compute and storage resources based on data
volume and query complexity — a crucial capability for insurance
organizations managing fluctuating data demands.

2. Core Architectural Components
a. Data Ingestion and Storage (Azure Data Lake Storage — ADLS)

« Raw and semi-structured data sources such as claim documents,
social media logs, customer emails, and telematics feeds are ingested into
ADLS Gen2, maintaining data in its native format for flexibility.

« The data lakehouse design enables simultaneous access for batch and
streaming workloads, supporting the ETL/ELT pipelines used for feature
generation.

« Metadata is cataloged using Azure Purview to ensure data governance,
traceability, and compliance with insurance data regulations (e.g., HIPAA,
GDPR).

b. Data Processing and Analytics (Azure Synapse Analytics)

+ Synapse serves as the central analytical hub, executing high-
performance distributed queries over structured claim records and
aggregated historical data.

« Its MPP engine efficiently handles petabyte-scale datasets, ensuring
low latency during feature computation and exploratory data analysis.
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o Both structured data (e.g., customer demographics, claims, and
policy attributes) and unstructured text data (e.g., incident reports) are
integrated into the analytical pipeline.

o Preprocessed and relationalized data is optimized into Synapse
dedicated SQL pools for fast aggregation, enabling advanced reporting
and real-time dashboards through Power BIL.

¢. Machine Learning Integration (Azure Machine Learning Service)

o Trained models such as Gradient Boosting Regression (GBR) and
HistGradientBoosting Regression (HGBR) were developed, validated,
and deployed using Azure Machine Learning (Azure ML) workspaces.

« Azure ML pipelines orchestrate data preprocessing, feature selection,
model training, and evaluation automatically, ensuring reproducibility
and version control.

o Model artifacts are stored in Azure Blob Storage, while scoring
services are containerized using Azure Kubernetes Service (AKS) for
scalable inference in production.

d. Integration with Reporting and Decision Systems

« Synapses native connectors allow seamless integration with Power
BI, Excel, and external AI/ML ecosystems (e.g., Python, PySpark,
TensorFlow).

« This interoperability enables analysts and actuaries to visualize
predictions such as migration time, cost projections, or cloud capacity
planning metrics in real time, facilitating data-driven decision-making.

Key Architectural Strengths

« Data Processing Scalability: Synapse’s distributed compute design
ensures that insurance firms can handle terabytes of policy and claims
data without latency degradation.

« Elastic Compute and Cost Optimization: Azure’s autoscaling
and pay-as-you-go model reduce operational costs during non-peak
processing cycles.

« Enhanced Model Performance: The integrated architecture allows
direct interaction between analytical data pipelines and machine learning
models, improving data freshness and prediction accuracy.

o Security and Compliance: Role-based access control (RBAC),
managed identities, and encryption ensure compliance with regulatory
frameworks critical to the insurance industry.

Enhanced Architectural Flow

« Data Acquisition: Claims and policy data enter via Azure Data
Factory pipelines into ADLS.

« Preprocessing: Synapse serverless pools perform transformation,
cleaning, and aggregation.

« Feature Engineering: Features are generated using Python notebooks
hosted in Synapse Studio and pushed to Azure ML.

« Model Training and Evaluation: GBR and HGBR models are trained
and evaluated on Azure ML compute clusters.

» Deployment and Monitoring: The best-performing model (HGBR)
is deployed as a web service endpoint for API-based consumption by
insurance operations dashboards.

Summary

The Azure Cloud Architecture effectively integrates data storage,
analytics, and machine learning into a unified, scalable framework. Its
elasticity, interoperability, and governance features make it particularly
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suitable for predictive performance analysis in enterprise-scale cloud
migrations. In this research, the architecture not only streamlined data
processing but also provided the computational agility necessary for
accurate model training and evaluation, demonstrating how cloud-native
ecosystems can accelerate Al-driven transformation in the insurance
industry.

Material and Methods

Materials:

DataSize_GB: The DataSize_GB parameter represents the total size of
the data stored in the Netezza environment that needs to be migrated to
the Azure cloud. It is measured in gigabytes (GB) and serves as a critical
input variable because the overall data volume directly affects migration
time, storage requirements, and transfer strategies. Larger datasets
typically require more bandwidth, extended data extraction periods,
and complex optimization techniques to minimize downtime during
migration. Therefore, this parameter provides an essential quantitative
measure of workload magnitude in the migration process.

NumTables: The Num Tables parameter indicates the total number
of individual tables contained within the Netezza database that are
subject to migration. This value reflects the logical complexity and data
segmentation of the source system. A higher number of tables often
implies more schema objects, dependencies, and relationships that must
be accurately transformed and validated within the Azure environment.
Consequently, as the number of tables increases, additional time and
resources are required for schema mapping, validation, and performance
tuning after migration.

Complexity Score: The Complexity Score parameter quantifies the
overall technical and structural complexity of the migration project. This
score can be assigned based on several qualitative and quantitative factors,
such as data transformations, inter-table dependencies, procedural logic
(e.g., stored procedures, triggers), and custom scripts. It typically ranges
from 1.0 (very simple) to 10.0 (extremely complex). Higher complexity
scores represent migrations that demand extensive re-engineering, testing,
and validation to ensure compatibility with Azure services. Thus, this
parameter serves as an important predictor of both effort and duration.

Migration Time_Hours: The Migration Time_Hours parameter
represents the total estimated or observed time required to complete the
migration from Netezza to Azure, expressed in hours. It serves as the
output variable in the dataset and depends on multiple factors, including
data volume, number of tables, and migration complexity. The value
encompasses all key stages of the migration process — data extraction,
transformation, transfer, validation, and deployment in the Azure
environment. Analyzing this metric helps project managers and engineers
predict timelines, identify performance bottlenecks, and optimize
migration strategies for future projects.

Machine Learning Algorithms

Hist Gradient Boosting Regression: The Hist Gradient Boosting
Regression model is an advanced ensemble learning technique that
builds upon the principles of traditional gradient boosting but introduces
histogram-based binning to improve efficiency and scalability. Instead of
using raw continuous feature values directly, the algorithm discretizes them
into a fixed number of bins, which significantly reduces memory usage
and speeds up computation, particularly for large datasets. It constructs
multiple decision trees in a sequential manner, where each subsequent
tree attempts to correct the prediction errors made by the previous ones.
This iterative optimization minimizes a chosen loss function, such as
mean squared error, leading to highly accurate regression results. Hist
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Gradient Boosting is well-suited for numerical data, handles missing values effectively, and provides a balance between computational efficiency and
predictive power, making it ideal for large-scale data migration and performance prediction tasks.

Gradient Boosting Regression: The Gradient Boosting Regression model is a powerful ensemble learning technique that builds a strong predictive
model by combining multiple weak learners, typically decision trees, in a sequential manner. At each stage, the model attempts to correct the errors
made by the previous ensemble by fitting a new tree to the residuals of the predictions. This iterative optimization process minimizes a specified loss
function, such as the mean squared error, by computing the gradient of the loss with respect to the model’s predictions. Each subsequent tree focuses on
the samples that were poorly predicted earlier, thereby progressively improving overall performance.

Result and Discussion

Table 1. Descriptive Statistics
DataSize_GB NumTables ComplexityScore MigrationTime_Hours

count 500 500 500 500
mean 306.293 198.368 5.6616 229.0664

std 292.2064 117.2229 2.640737 113.481

min 6.52 1 1 1

25% 87.835 97.75 3.4225 140.6

50% 220.95 204 5.76 233.03

75% 428.3275 302 7.96 316.7775

max 1492.05 400 9.99 555.21

The dataset consists of 500 migration records, each representing a unique Netezza-to-Azure migration scenario characterized by data size, number
of tables, migration complexity, and the resulting migration time in hours. The DataSize_GB parameter ranges from 6.52 GB to 1,492.05 GB, with an
average size of approximately 306.29 GB. The relatively high standard deviation (292.21) indicates substantial variability in data volumes among projects,
reflecting a mix of small, medium, and large-scale migrations. The median value (220.95 GB) suggests that most projects are moderately sized, while the
maximum value represents a few outlier projects involving massive data volumes. The Num Tables parameter, which denotes the total number of tables
migrated, varies between 1 and 400, with a mean of 198.37 tables and a standard deviation of 117.22. This distribution implies that migration projects
differ widely in structural complexity, from very simple databases with only a few tables to highly complex systems with hundreds of interlinked tables.
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Figure 1: Pair Plot of Migration Dataset Variables
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Figure 1 illustrates the pairwise relationships among the four key numerical parameters in the Netezza-to-Azure cloud migration dataset: DataSize_
GB, NumTables, ComplexityScore, and MigrationTime_Hours. The diagonal plots display the distribution of each variable, while the off-diagonal
scatter plots reveal the correlations between them. The distribution of DataSize_GB is notably right-skewed, indicating that most migration projects
involve relatively smaller datasets, with a few instances of very large data volumes. The NumTables variable appears uniformly distributed, suggesting a
diverse range of database structures across projects. Complexity Score values are evenly spread, reflecting balanced representation from simple to highly
complex migrations.
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Figure 2: Correlation Heatmap of Migration Dataset Variables

Figure 2 presents a correlation heatmap illustrating the linear relationships among the four key numerical variables: DataSize_GB, NumTables,
ComplexityScore, and MigrationTime_Hours. The color intensity represents the strength and direction of the correlation coefficients, with darker shades
indicating stronger relationships. From the heatmap, it is evident that Migration Time_Hours has a strong positive correlation with NumTables (r =
0.81), suggesting that the number of tables migrated is the most influential factor in determining overall migration duration. This indicates that projects
involving a higher number of tables tend to require significantly longer migration times, likely due to increased schema complexity, data validation
efforts, and dependency handling.

Gradient Boosting Regression

Figure 3 illustrates the comparison between the predicted and actual
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Figure 3: Predicted vs Actual MigrationTime_Hours (Training Data)
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Figure 4: Predicted vs Actual MigrationTime_Hours (Testing Data)

Figure 4 illustrates the relationship between the predicted and actual
values of MigrationTime_Hours for the testing dataset using the Gradient
Boosting Regression model. The scatter plot displays a strong positive
correlation, with most data points closely aligning around the diagonal
reference line, indicating that the model performs well on unseen data.
Although some deviation from the ideal line is observed, particularly at
higher migration time values, the overall trend confirms that the model
maintains reliable generalization capability. The slight dispersion of points
around the diagonal suggests the presence of minor prediction errors,
which are typical when evaluating real-world data. Nonetheless, the model
demonstrates robust predictive accuracy and consistency, validating its
effectiveness in estimating migration time based on parameters such as
DataSize_GB, NumTables, and Complexity Score.
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Figure 5 presents a scatter plot comparing the predicted versus actual
migration times (in hours) for the training dataset. Each point on the
plot represents a single migration project, where the x-axis denotes the
actual migration time observed in the dataset, and the y-axis shows the
corresponding value predicted by the regression model. The dashed
diagonal line represents the ideal fit line (y = x), where predictions would
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perfectly match the actual values. The close alignment of most data points
around this line indicates that the model performs well in capturing the
underlying relationship between the input features — DataSize_GB,
NumTables, and ComplexityScore — and the migration duration.

Predicted vs Actual MigrationTime_Hours(Testing data)
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Figure 6: Predicted vs. Actual MigrationTime_Hours (Testing Data)

Figure 6 depicts the comparison between the predicted and actual
migration times (in hours) for the testing dataset, illustrating how well
the regression model generalizes to unseen data. The x-axis represents
the observed (actual) migration times, while the y-axis shows the model’s
predicted values. The dashed diagonal line denotes the ideal prediction
line (y = x), where perfect predictions would lie. The data points in the
figure are closely aligned with this line, demonstrating that the model
maintains a high level of accuracy even on data that were not used during
training. Although there is slightly greater dispersion around the diagonal
compared to the training set (as shown in Figure 3), the overall pattern
still indicates a strong linear correspondence between predicted and
actual values.

Conclusion
Major Findings

o The empirical comparison between Gradient Boosting Regression
(GBR) and HistGradientBoosting Regression (HGBR) models
revealed distinct strengths in their predictive behaviors for estimating
MigrationTime_Hours during Netezza-to-Azure cloud migrations.

« GBR achieved extremely high training accuracy (R*> = 0.9997),
demonstrating its capability to model complex nonlinear relationships
among variables such as DataSize_GB, NumTables, and ComplexityScore.
However, this resulted in mild overfitting, reflected in a lower testing R*
value (= 0.685).

o HGBR, in contrast, offered more balanced and generalizable
performance, with training R* = 0.922 and testing R* = 0.751. Its lower
MAE and RMSE across unseen data indicate greater robustness and
stability against variability in real-world migration workloads.

« Overall, HGBR outperformed GBR in achieving the best trade-off
between training precision and generalization, making it more suitable
for practical, production-grade cloud migration forecasting tasks.
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Table 2. Model Performance Comparison on Training Dataset

Data Symbol R2 EVS MSE RMSE MAE MaxError MSLE MedAE
Train GBR 0.999686 0.999686 3.829029 1.95679 1.470011 6.669635 0.004672 1.149156
Train HGBR 0.921616 0.921616 954.5072 30.8951 23.99935 109.3999 0.301335 19.95517

The performance comparison between the Gradient Boosting Regression (GBR) and HistGradientBoosting Regression (HGBR) models reveals a
significant difference in predictive accuracy and model fit for the training dataset. The GBR model demonstrates exceptionally high accuracy, achieving
an R? score of 0.9997 and an Explained Variance Score (EVS) of 0.9997, indicating that it can explain nearly all the variance in MigrationTime_Hours.
The very low Mean Squared Error (MSE) of 3.83, Root Mean Squared Error (RMSE) of 1.96, and Mean Absolute Error (MAE) of 1.47 confirm that the
prediction errors are minimal. Additionally, the Maximum Error (6.67) and Mean Squared Logarithmic Error (MSLE) of 0.0047 are extremely small,
emphasizing that the model’s predicted values closely align with the actual migration times. The Median Absolute Error (MedAE) of 1.15 further
supports this, showing that most predictions are very close to true values. Collectively, these results reflect an almost perfect fit, suggesting that the GBR
model has learned the underlying relationships in the training data with remarkable precision.

Table 3. Model Performance Comparison on Testing Dataset

Data Symbol R2 EVS MSE RMSE MAE MaxError MSLE MedAE
Test GBR 0.685322 0.702106 4303.969 65.60464 51.51261 227.7634 0.444388 42.90549
Test HGBR 0.750949 0.760969 3406.356 58.36399 46.01046 186.9987 0.362927 36.67695

The testing results highlight how well the Gradient Boosting Regression (GBR) and HistGradientBoosting Regression (HGBR) models generalize to
unseen data, providing a realistic measure of their predictive reliability. The GBR model achieves an R* score of 0.6853 and an Explained Variance Score
(EVS) of 0.7021, suggesting that it can explain approximately 68-70% of the variance in the testing data. While this indicates a reasonable predictive
capability, it also reveals that the model’s performance drops notably when applied to unseen data compared to its near-perfect training accuracy. The
Mean Squared Error (MSE) of 4303.97 and Root Mean Squared Error (RMSE) of 65.60 indicate a relatively high prediction deviation, showing that the
model tends to produce errors of around 65 hours on average when estimating migration time. The Mean Absolute Error (MAE) of 51.51 and Median
Absolute Error (MedAE) of 42.91 reinforce that the prediction discrepancies are substantial in certain cases. Furthermore, the Maximum Error (227.76)
suggests that a few extreme cases differ significantly from the actual values.

Insurance Industry Implications gradient boosting with deep learning architectures (e.g., neural boosting

frameworks) to enhance prediction accuracy under nonlinear and high-
dimensional feature spaces.

« For the insurance industry, which increasingly depends on large-scale
data migrations for actuarial models, policy management, and regulatory
analytics, accurate prediction of migration effort and duration is critical to

. 5 at ; « Expanding the dataset to include multi-cloud environments and
risk mitigation and cost planning.

cross-platform migrations (e.g., from Teradata, Oracle, or Hadoop
« The demonstrated robustness of HGBR models can help insurers  ecosystems) would enable broader model applicability.
forecast cloud transition timelines more reliably, optimize infrastructure

N . . ; « Incorporating real-time migration telemetry and cost-performance
provisioning, and reduce downtime-related operational risk.

tradeoff metrics could make predictions more actionable for enterprise
o These predictive insights can further support governance and  migration planning.
compliance frameworks, enabling data officers to plan migrations that
align with regulatory standards such as HIPAA or GDPR when handling

sensitive customer data.

« Lastly, exploring explainable AI (XAI) techniques will improve model
interpretability, helping decision-makers trust and adopt Al-driven
migration forecasting tools.

Barriers and Limits Final Words

« The study is limited by the size and diversity of the dataset, which
may not encompass all possible workload configurations encountered in
heterogeneous enterprise environments.

The comparative evaluation underscores the importance of selecting
the right gradient boosting variant for cloud migration forecasting. While
GBR excels in capturing intricate relationships, HGBR delivers superior
generalization and practical reliability. As organizations—particularly
in data-intensive domains like insurance—accelerate their cloud
transformation journeys, leveraging interpretable and robust predictive
models such as HGBR can significantly improve migration planning
efficiency, cost predictability, and risk governance. Continued research
integrating explainable AI and cross-cloud datasets will further solidify
machine learning’s role as a cornerstone of data-driven migration strategy
optimization.

« Potential feature bias and data imbalance in migration attributes
(e.g., limited cases with extremely high data volumes) may affect the
generalization of results.

o The models were trained using specific cloud ecosystem parameters
(Azure); results may vary when applied to other cloud providers such as
AWS or GCP without retraining or hyperparameter adjustment.

« Further, non-quantitative migration factors such as human expertise,
network latency variations, and concurrent workloads were not explicitly
modeled but can significantly influence migration time.

What Future Research Needs to be Conducted?

« Future research should explore hybrid ensemble models that combine
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