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Abstract
Enterprise adoption of generative AI is rapidly shifting from isolated prompt-driven applications toward complex agentic systems that integrate retrieval, 

reasoning, and tool execution. As these systems grow in scale, the lack of a standardized interaction model between agents and external capabilities introduces 
challenges in reliability, observability, security, and operational governance.

This paper presents aplat form architecture centered on the Model Context Protocol (MCP) as a first-class systems abstraction for enterprise-scale agentic 
generative AI. MCP servers act as strongly isolated, capability-oriented services that expose tools, data access, and actions to agents throughwell-defined contracts.
This separation enables controlled tool invocation, bounded execution, and fault isolation across complex multi-agent workflows.

We describe the architectural principles, execution lifecycle, and operational characteristics of

MCP-based platforms, including agent orchestration, context management, latency governance, and failure containment. The paper draws on production 
deployment experience and provides guidance for building scalable, cost-aware,and reliable agentic AI systems in enterprise environments.
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Introduction
 Generative AI systems are undergoing a fundamental architectural 

transition. Early deployments focused primarily on single-turn prompt 
completion, where language models operated as isolated inference 
engines. In contrast, modern enterprise use cases increasingly require 
agentic behavior: multi-step reasoning, interaction with external tools, 
retrieval of domain knowledge, and execution of business actions.

This transition introduces new systems-level challenges.Agent 
workflows may span multiple language model invocations, tool calls, and 
data sources, often under strict latency, cost, and reliability constraints.
Without clear execution boundaries,thesesystemsriskunboundedfan-out, 
cascading failures, and unpredictable operational behavior.

The Model Context Protocol (MCP) addresses these challenges by 
formalizing how agents interact with external capabilities. Rather than 
embedding toollogicdirectlywithinagents, MCPexternalizes tools into 
independently deployable servers with explicit schemas, execution 
semantics, and lifecycle management. This decoupling enables stronger 
isolation, observability, and governance while preserving flexibility at the 
agent layer.

This paper examines MCP not as anapplication-level convenience, but 
as aplatform-level abstraction analogous to microservices in distributed 
systems.We argue

that   MCP-based  architectures  provide      a   scalable    foundation 
for enterprise agentic AI,  enabling controlled  execution, predictable tail 
latency, and sustainable operational cost as generative AI systems evolve 
in complexity.

MCP Platform Architecture
 Architectural Overview 
The MCP platform establishes a strict separation between agent 

reasoning and external capability execution. Agents focus exclusively on 
planning, decomposition, and decision-making, while all side-effecting 
operations are delegated to MCP servers deployed as independent services.

This separation is foundational to achieving scalability and operational 
safety in agent-based systems. By preventing agents from directly 
invoking infrastructure, databases, or external APIs, the platform enforces 
deterministic execution boundaries and reduces the impact scope of 
failures. 

From Monolithic Agents to MCP Servers Early agent implementations 
typically embedded prompts, tools, data access, and business logic within 
a single monolithic application. As the number of tools and workflows 
grew, this approach made versioning, testing, and operational governance 
increasingly difficult.

MCP externalizes execution into independently deployable servers 
with explicit schemas and execution contracts. This decoupling enables 
controlled evolution of tools, safer experimentation, and clearer ownership 
across large engineering organizations.
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Core Platform Components
 The MCP platform is composed of four primary components:

• Agents: Reasoning entities responsible for planning and tool selection

• MCP Servers: Capability-specific, stateless execution services

• Orchestrator: Routing, policy enforcement, retries, and concurrency 
control

• Context Store: Structured state for execution continuity 

Each component scales independently, enabling fine-grained capacity 
management and fault isolation as agent complexity and workload volume 
increase.

Execution Semantics
 Each transition in the execution flow represents a strict validation 

boundary. The orchestrator validates tool schemas, enforces authorization 
policies, and applies rate limits before forwarding requests to MCP servers.

MCP servers execute deterministically and return structured results 
that are persisted to the context store. This ensures downstream reasoning 
operates on stable, versioned inputs and enables safe retries or partial re-
execution.

Explicit Context Management Materializing context between 
execution steps enables auditable execution traces, deterministic replay, 
and partial workflow recovery. This design supports pause-resume 
semantics and prevents loss of conversational or execution state during 
retries or failures.

Single-System MCP Execution Flow
 Search Execution Path
To illustrate the MCP execution model concretely, this section focuses 

on a single domain capability: Search. The same interaction pattern applies 
uniformly to other MCP-backed domains such as pricing, inventory, 
recommendations, fulfillment, and assortment.

The execution flow begins at the UI, where user intent is forwarded to a 
Workflow Agent responsible for high-level intent decomposition. Rather 
than embedding business logic or system access directly, the Workflow 
Agent delegates domain-specific reasoning to a specialized Search Agent.

The Search Agent performs semantic interpretation, ranking strategy 
selection, constraint resolution, and fallback planning. Once an execution 
plan is formed, the agent invokes the Search MCP server using a strongly 
typed tool interface, ensuring schema validation and bounded execution 
semantics.

Figure 2: MCP execution flow for a single domain capability (Search).

Generalization Across Domains
 This execution pattern generalizes across all enterprise domains. Each 

domain introduces a specialized Agent and MCP Server pair without 
modifying the Workflow Agent or orchestration semantics. This preserves 
architectural consistency while enabling independent evolution of domain 
capabilities. 

MCP Server Responsibility
The Search MCP server serves as the exclusive execution gateway 

to downstream search infrastructure. It enforces schema validation, 
authorization, rate limits, and request normalization before interacting 
with enterprise systems.

The MCP server contains no business reasoning and produces 
deterministic, side-effect-free responses. This separation ensures 
predictable execution while allowing MCP servers to remain stateless, 
horizontally scalable, and reusable across agents and workflows.

Latency and Throughput Benchmarks
Table summarizes observed P95 latency under a representative 

workload of 10 TPS, average 10,000-token prompts, and up to eight tools 
exposed per MCP server.
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Table 1: P95 latency comparison across single- and multi-intent queries.

Interpretation
Introducing MCP servers increases end-to-end latency by 

approximately 1–2 seconds due to explicit orchestration, schema 
validation, authorization, and context materialization. This overhead is 
an intentional trade-off for improved observability, fault isolation, and 
deterministic execution.

Latency is dominated by agent reasoning depth and the number of 
MCP tool invocations rather than raw LLM inference alone. Multi-intent 
workflows may execute MCP calls sequentially or in parallel depending 
on dependency structure, yet observed P95 bounds remain suitable for 
interactive enterprise applications.

Context Management Model
Explicit Context Materialization

A defining characteristic of the MCP platform is the explicit 
materialization of execution context between reasoning and execution 
steps. Rather than relying on implicit conversational state embedded 
within application runtimes, all intermediate inputs, outputs, and 
execution metadata are persisted as structured context objects exchanged 
across MCP boundaries.

It is important to note that prior monolithic agent systems already 
achieved high levels of observability through OpenTelemetry, structured 
logging, and agent tracing frameworks such as LangSmith. MCP does not 
replace these capabilities, nor does it fundamentally alter the mechanics of 
tracing or metrics collection. 

The key distinction lies not in observability depth, but in context 
ownership. Under MCP, context is no longer an internal implementation 
detail of a single application. Instead, it becomes an explicit, portable 
artifact that can be consumed, replayed, and reasoned about across 
independently deployed MCP servers and agent runtimes.

Deterministic Replay and Workflow Contro
Explicit context exchange enables deterministic replay of agent 

workflows at the protocol boundary. Given the same user intent and 
persisted context,

agent reasoning can be re-executed without reissuing side-effecting 
calls to external systems. This capability is especially valuable when 
workflows span multiple domain capabilities owned by different teams. 
Failures can be isolated to individual steps, allowing targeted retries or 
alternative execution paths without resetting the entire workflow or 
recomputing upstream reasoning. 

Isolation of Reasoning and Execution State
By externalizing execution context, MCP isolates agent reasoning 

state from tool execution infrastructure. Agents remain stateless across 
invocations, while MCP servers operate as deterministic execution 
endpoints. 

This separation eliminates hidden coupling between prompt logic, tool 
behavior, and runtime state that commonly emerges in monolithic agent 
applications as prompt complexity and tool surface area grow.

Tool Contracts, Prompts, and MCP APIs
 Domain-Specific MCP Servers
The primary architectural benefit of MCP lies in the creation of 

domain-specific MCP servers that encapsulate tools, resources, and 
prompts for a well-defined business capability. Examples include search, 
pricing, inventory, fulfillment, or recommendations. 

Each MCP server acts as a canonical owner of its domain contracts. 
Tools, prompt templates, and resource definitions are versioned, tested, 
and evolved independently from agent applications. This contrasts with 
monolithic designs, where prompts and tools are tightly coupled to 
application releases and difficult to evolve safely. 

Externalization and Versioning of Prompts
Prompts are treated as first-class artifacts within MCP servers rather 

than inline strings embedded in application code. This externalization 
enables explicit versioning, controlled rollout, and backward compatibility 
across agents and consuming applications. 

Applications may query MCP servers to retrieve prompt templates 
dynamically or invoke tools directly without embedding prompt logic 
locally. This pattern allows multiple applications to share the same domain 
intelligence while maintaining independent release cycles. 

Tool Invocation Across Applications
MCP servers expose tools and prompts designed specifically for 

consumption by generative AI agents and AI-driven services. This design 
enables consistent reuse of domain intelligence across conversational 
agents, retrieval-augmented generation pipelines, and multi-agent 
workflows, while ensuring that all generative interactions follow the same 
validated execution and governance model. 

By consolidating domain logic into MCP servers, enterprises avoid 
duplicating tool implementations, reduce prompt drift, and enforce 
consistent execution semantics across heterogeneous consumers.

Design Implication The MCP model shifts agent architectures away 
from monolithic prompt-and-tool bundles toward a modular, service-
oriented ecosystem. The primary gains are not improved observability, 
but improved governance, reuse, and evolvability of prompts, tools, and 
domain intelligence at enterprise scale.
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Latency Characteristics
End-to-End Latency Decomposition

End-to-end latency in MCP-based systems is composed of four 
dominant factors: agent reasoning time, orchestration overhead, MCP 
server execution, and downstream system response latency. These 
components are explicitly separated to enable targeted optimization 
without cross-layer interference. 

Agent reasoning latency is driven primarily by prompt size, reasoning 
depth, and conversation context length. Orchestration overhead remains 
minimal, consisting of schema validation, routing, and policy checks. 
MCP server latency is largely determined by downstream system behavior 
and is isolated per domain, preventing unrelated capabilities from 
influencing one another. 

Observed Latency Trade-offs

Compared to pre-MCP monolithic designs, MCP-based execution 
introduces an additional 1–2 seconds of overhead at the P95 level. 
This increase is primarily attributable to explicit orchestration, context 
serialization, and network boundaries between agents and MCP servers. In 
exchange, latency variance is significantly reduced. Tail behavior becomes 
predictable and bounded, which is critical for enterprise interactive 
systems operating under mixed workloads and partial dependency 
degradation.

Throughput and Concurrency
Horizontal Scaling Behavior

MCP servers are stateless and scale horizontally with minimal 
coordination. Throughput increases linearly with replica count, allowing 
capacity to be provisioned independently for each domain such as search, 
pricing, or inventory.

This domain-level scaling avoids coarse-grained over-provisioning and 
enables cost-efficient handling of asymmetric traffic patterns common in 
enterprise workloads. 

Concurrency Management

Concurrency limits are enforced per MCP server to protect downstream 
systems. Requests beyond configured thresholds are queued or throttled 
deterministically, ensuring that admitted traffic continues to meet latency 
objectives.

Concurrency policies are tuned based on domain-specific 
characteristics, including request complexity, cache effectiveness, and 
downstream service limits. 

Backpressure and Load Regulation

Explicit backpressure mechanisms allow MCP servers to signal 
overload conditions to the orchestrator. In response, the platform can 
defer non-critical requests or apply graceful degradation strategies for 
lower-priority interactions. 

Operational Outcome In production environments, these mechanisms 
yield stable P95 and P99 latency profiles, predictable throughput scaling, 
and controlled degradation under stress. The modest increase in median 
latency is offset by improved tail stability and operational predictability as 
system complexity grows.

Cost Predictability and Capacity Planning
Cost Structure Decomposition

The MCP platform’s cost profile is driven by three primary components: 
agent inference, MCP server execution infrastructure, and downstream 
system utilization. Each component scales independently, enabling 
explicit attribution of cost to individual domains and workflows.

Agent-related costs scale with request volume, reasoning depth, 
and context size. Because agents remain stateless and are invoked only 
at orchestration boundaries, inference cost grows proportionally with 
sustained traffic rather than overall system complexity. MCP server costs 
scale with domain throughput and are bounded by explicit concurrency 
limits enforced by the orchestrator. 

Domain-Level Capacity Planning

In contrast to monolithic deployments, capacity planning in MCP-
based systems occurs at the domain boundary. Search, pricing, inventory, 
recommendations, and fulfillment are provisioned independently based 
on observed traffic patterns, latency sensitivity, and business criticality.

This model avoids global over-provisioning driven by localized demand 
spikes and enables targeted investment where capacity directly impacts 
user experience and revenue. 

Infrastructure Elasticity

Stateless MCP servers enable rapid elasticity. Instances can scale 
up during traffic surges and scale down without coordination or state 
migration. Scaling decisions are driven purely by request rates and latency 
thresholds, improving cost efficiency under volatile retail workloads.

Cost Predictability and Capacity Planning
Cost Structure Decomposition

The MCP platform’s cost profile is driven by three primary components: 
agent inference, MCP server execution infrastructure, and downstream 
system utilization. Each component scales independently, enabling 
explicit attribution of cost to individual domains and workflows. 

Agent-related costs scale with request volume, reasoning depth, 
and context size. Because agents remain stateless and are invoked only 
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Domain-Level Capacity Planning

In contrast to monolithic deployments, capacity planning in MCP-
based systems occurs at the domain boundary. Search, pricing, inventory, 
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Business Value and Trade-Offs
Cost versus Conversion Impact

Although modular MCP architectures introduce additional 
infrastructure layers, they provide tighter control over tail latency, which 
has a measurable impact on user engagement. Across large retail platforms, 
P95 and P99 latency have a stronger correlation with conversion outcomes 
than average response time. 

By isolating degraded domains and enforcing bounded execution, 
MCP-based systems protect revenue-critical user journeys such as search 
discovery and checkout flows, even when individual dependencies 
experience partial degradation. 

Predictable Scaling Economics

Reactive scaling strategies in monolithic systems often result in cost 
volatility driven by short-lived traffic spikes. MCP-based platforms 
exhibit more predictable scaling behavior, where cost growth aligns with 
sustained business expansion rather than transient load fluctuations.

This predictability simplifies budgeting, capacity forecasting, and 
executive decision-making during high-impact retail events such as 
seasonal promotions. 

Operational Cost Considerations

Separating reasoning from execution reduces operational complexity. 
Failures are localized to individual domains, recovery procedures are 
narrowly scoped, and execution paths are explicitly captured. These 
properties reduce diagnostic effort and ongoing operational overhead 
without requiring specialized runtime coupling. 

Strategic Implication The primary trade-off introduced by MCP 
architectures is increased structural explicitness in exchange for long-
term cost stability, predictable scaling, and controlled tail latency. For 
enterprise-scale platforms, this trade-off becomes increasingly favorable 
as traffic volume, domain complexity, and agent usage grow.

Multi-Agent Coordination Model
Role Specialization

The MCP platform adopts a role-specialized agent model rather than 
a single general-purpose agent. Each agent is scoped to a well-defined 
domain such as search, recommendations, pricing, or inventory. This 
specialization reduces reasoning complexity and enables domain-
optimized prompting, evaluation logic, and fallback strategies.

A central workflow agent resolves user intent and delegates domain-
specific subtasks to specialized agents. This hierarchical coordination 
pattern prevents combinatorial growth in reasoning paths as system 
capabilities expand. 

Agent Invocation Boundaries

Agents never invoke each other directly. All interactions are mediated 
through the orchestrator, enforcing explicit execution boundaries and 
eliminating implicit coupling between agent implementations.

Each agent invocation is treated as a discrete, auditable step with 
structured inputs and outputs. This allows workflows to be paused, 
replayed, or partially re-executed without impacting concurrent requests.

Concurrency Management

Concurrency limits are enforced per agent and per MCP server. Limits 
are tuned based on domain criticality and downstream system capacity, 
ensuring that high-volume domains do not starve lower-throughput but 
operationally critical capabilities.

Workflow Scaling and Cost Characteristics
Lightweight MCP Server Execution Model

MCP servers are deployed as lightweight, stateless execution services 
following the Model Context Protocol runtime model. Each server 
exposes a bounded set of tools, resources, and prompts through strongly 
typed MCP contracts, without embedding application-level orchestration 
or agent reasoning. In production environments, maintaining MCP 
servers for low-throughput generative AI workloads incurs minimal 
infrastructure overhead. Typical deployments supporting limited traffic 
volumes (on the order of tens of requests per second) require modest 
baseline capacity, with costs remaining small relative to overall generative 
AI platform spend. As traffic increases, MCP servers scale elastically, 
ensuring that infrastructure cost grows proportionally with sustained 
demand rather than idle capacity. 

LLM Cost Dominance and Traffic Gating

End-to-end system cost is dominated by large language model 
inference, which can reach tens or hundreds of thousands of dollars per 
month at scale. As a result, agentic workflows are intentionally exposed 
to a controlled percentage of users, targeting high-value or complex 
interactions rather than full traffic coverage.

Because MCP server traffic scales with gated agent usage rather than 
raw user volume, infrastructure requirements remain modest. This allows 
enterprises to adopt MCP incrementally without significant baseline 
infrastructure expansion. 

Scaling Implications

Workflow throughput scales by increasing concurrent workflow 
instances rather than deepening execution chains. Stateless MCP servers 
and explicit orchestration ensure predictable scaling behavior even as 
additional agents, tools, and prompt variants are introduced. 

Operational Outcome In practice, this model enables multi-agent 
workflows to scale safely while keeping infrastructure cost low and 
predictable. MCP servers introduce minimal overhead relative to LLM 
inference, making them a practical and economical foundation for 
enterprise-scale agentic systems.

Failure Modes in MCP Systems
Tool Execution Failures

In MCP-based systems, failures primarily originate from external 
dependencies, including downstream service unavailability, schema 
violations, timeout conditions, and partial data responses. These conditions 
are treated as explicit execution outcomes rather than exceptional control-
flow paths.

Each MCP server returns structured error responses that encode failure 
type, severity, and retry eligibility. Errors are persisted alongside successful 
results in the execution context, enabling agents to reason about failures 
without restarting workflows or re-invoking unrelated tools. 

Agent Reasoning Failures

Agent-level failures arise from incorrect assumptions, insufficient 
context, or conflicting objectives during planning. Because agents do 
not directly perform side-effecting operations, reasoning failures do not 
corrupt execution state. 

Agents may re-plan, request additional context, or invoke alternative 
tools using the same persisted execution history. This separation 
avoids tightly coupled failure modes common in monolithic agent 
implementations where reasoning and execution are interleaved.
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Context Integrity Guarantees

All intermediate state is written immutably to the context store. Context 
entries are versioned and append-only, preventing partial updates or 
inconsistent writes from propagating across execution steps.

Failed operations never overwrite previously validated context, 
preserving a consistent execution history suitable for recovery and replay.

Failure Modes in MCP Systems
Tool Execution Failures

In MCP-based systems, failures primarily originate from external 
dependencies, including downstream service unavailability, schema 
violations, timeout conditions, and partial data responses. These conditions 
are treated as explicit execution outcomes rather than exceptional control-
flow paths.

Each MCP server returns structured error responses that encode failure 
type, severity, and retry eligibility. Errors are persisted alongside successful 
results in the execution context, enabling agents to reason about failures 
without restarting workflows or re-invoking unrelated tools. 

Agent Reasoning Failures
Agent-level failures arise from incorrect assumptions, insufficient 

context, or conflicting objectives during planning. Because agents do 
not directly perform side-effecting operations, reasoning failures do not 
corrupt execution state. 

Agents may re-plan, request additional context, or invoke alternative 
tools using the same persisted execution history. This separation 
avoids tightly coupled failure modes common in monolithic agent 
implementations where reasoning and execution are interleaved. 

Context Integrity Guarantees

All intermediate state is written immutably to the context store. Context 
entries are versioned and append-only, preventing partial updates or 
inconsistent writes from propagating across execution steps. 

Failed operations never overwrite previously validated context, 
preserving a consistent execution history suitable for recovery and replay.

Recovery and Retry Strategies
 Policy-Driven Retries

Retries are managed centrally by the orchestrator and governed by 
explicit policies. Each MCP tool declares retry eligibility, backoff behavior, 
and maximum attempt limits. Retries are restricted to idempotent 
operations to prevent duplicate effects.

This approach ensures bounded retry behavior and avoids uncontrolled 
retry loops under partial failure conditions. 

Partial Workflow Replay

Because execution context is materialized between steps, workflows 
can resume from the last successful checkpoint. Partial replay avoids re-
running expensive agent reasoning or upstream tool invocations that have 
already completed.

This capability simplifies operational recovery during downstream 
outages, deployments, or transient infrastructure instability. 

Graceful Degradation

When certain capabilities are unavailable, agents may degrade behavior 
by skipping optional steps, returning partial responses, or relying on 
cached results. Degradation policies are domain-specific and encoded 
declaratively.

Operational Resilience Together, explicit failure modeling, bounded 
retries, and partial replay enable MCP-based systems to recover predictably 
from partial failures. Recovery actions are localized to individual execution 
steps, preserving stable end-to-end latency characteristics under degraded 
conditions.

Security Model
Tool-Level Authorization

All MCP tool invocations are mediated by the orchestrator and 
protected by explicit authorization policies. Agents never hold credentials 
for downstream systems. Instead, each request is authenticated, authorized, 
and evaluated against policy before execution.

This design prevents unauthorized access even if agent reasoning logic 
produces unexpected execution intents. Authorization logic is centralized, 
versioned, and applied uniformly across all domains. 

Least-Privilege Execution
MCP servers are provisioned with narrowly scoped permissions 

aligned to their declared capabilities. Access is constrained by domain, 
operation type, and deployment environment.

This approach reduces accidental privilege escalation and limits the 
impact of misconfiguration or downstream compromise. 

Workflow Isolation
Each workflow executes within an isolated context namespace. Context 

data is never shared implicitly across requests, preventing cross-workflow 
data leakage, unintended inference, or state contamination.

Governance and Compliance
Auditable Execution Records

All agent decisions, tool invocations, and context mutations are 
recorded as structured execution records. These records capture inputs, 
outputs, timestamps, and policy decisions.

Auditing is deterministic and complete, enabling post-incident analysis, 
debugging, and compliance validation without relying on sampling or 
heuristic logging. 

Policy as Configuration

Execution policies including authorization rules, rate limits, timeout 
budgets, and retry eligibility are defined declaratively and versioned 
independently from agent logic. Policy changes can be applied without 
redeploying agents or MCP servers. 

Regulatory Alignment

Centralized enforcement of access control and execution policies 
simplifies alignment with  regulatory requirements related to access 
accountability, data handling, and operational traceability.

Limitations and Trade-Offs
Architectural Explicitness

MCP-based platforms introduce additional architectural components 
compared to monolithic agent implementations. Orchestration layers, 
context persistence, and domain-specific servers increase system 
explicitness and operational surface area.

This trade-off is intentional. The platform favors long-term 
maintainability, policy control, and predictable execution behavior over 
minimal architectural footprint, which is often insufficient at enterprise 
scale.
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Comparative Analysis of Agent Architectures
Architectural Approaches

Enterprise agent systems have evolved through three dominant 
architectural patterns: monolithic agent applications, graph-based agent 
frameworks, and MCP-based platforms. Each approach represents a 
different trade-off between simplicity, control, and scalability.

Monolithic designs tightly couple prompts, tools, and business logic, 
making versioning and reuse difficult. MCP platforms externalize these 
concerns, enabling independent evolution and shared consumption 
across applications.

Comparison with Graph-Based Agent Frameworks
Graph-based frameworks (e.g., DAG or state-machine driven agents) 

improve structure but still embed execution logic within the agent 
runtime. MCP differs by treating execution as a service boundary rather 
than a graph edge.

This distinction allows MCP platforms to enforce operational 
policies and failure containment without constraining agent reasoning 
expressiveness.
SLatency, Cost, and Operational Trade-Offs
Latency Characteristics

MCP-based execution introduces additional latency due to 
orchestration, context persistence, and network boundaries. However, 
this overhead is bounded and predictable.

The observed increase of 1–2 seconds is primarily attributable to explicit 
context handling, agent deliberation depth, and MCP tool invocation 
overhead, rather than LLM inference alone.

Cost Considerations
MCP servers introduce a predictable and bounded infrastructure 

overhead relative to monolithic agent deployments. In current production 
use cases, sustained request rates typically fall in the 10–30 requests per 
second range per domain, driven by product scope and budget allocation 
rather than architectural constraints.

MCP servers are lightweight and horizontally scalable, and can support 
higher throughput as demand grows. In practice, overall system cost 
is dominated by LLM inference, so MCP-based execution is applied 
selectively to high-value user flows and scaled incrementally as business 
requirements evolve.

By contrast, LLM inference dominates overall spend by orders of 
magnitude. Consequently, MCP architectures are economically viable 
when applied to selective, high-value traffic segments rather than full 
population coverage.

Trade-Off Summary
MCP platforms trade minimal added latency and infrastructure 

complexity for significant gains in prompt governance, tool reuse, 
deterministic execution, and enterprise operability. For large-scale agentic 
systems, this trade-off favors MCP-based designs as system scope and 
organizational complexity grow.

Observations from Production Deployment
  Operational Stability

 Production telemetry indicates that execution latency in MCP-based 
systems is primarily influenced by agent reasoning depth, the underlying 
language model, the number of tools invoked, and the size of input and 
output context. As workflows involve additional domains or tools whether 
executed sequentially or in parallel end-to-end latency increases in a 
predictable manner. 

Isolating execution into MCP servers does not eliminate this latency 
growth, but it ensures that performance characteristics remain stable 
and explainable. Latency increases are attributable to explicit factors 
such as model selection, token  budgets, orchestration strategy, and 
tool invocation patterns, rather than hidden coupling or uncontrolled 
side effects within the application. Under normal operating conditions, 
agent workflows execute within expected latency envelopes given their 
reasoning complexity and tool usage, allowing teams to reason about 
performance trade-offs explicitly as workflows evolve. 

This structural isolation provides a clear operational boundary: 
execution behavior in one domain is governed independently from 
others. While the evaluation period did not observe systemic performance 
regressions, the architecture ensures that any future domain-specific 
slowdowns or maintenance events would remain contained without 
impacting unrelated workflows.

Developer Velocity
Teams evolve agent reasoning logic independently from execution 

services. Updates to prompts, intent classification, routing heuristics, 
or decision policies do not require coordinated redeployment of MCP 
servers.

This decoupling reduces release coordination overhead and enables 
faster iteration on agent behavior while maintaining stable execution 
interfaces and operational safeguards. 

Cost-to-Performance Ratio
Introducing MCP servers adds a modest increase in infrastructure 
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cost relative to monolithic agent deployments. This increase is primarily 
attributable to the deployment and operation of dedicated execution 
services per domain. In practice, this additional cost remains well within 
established infrastructure budgets. 

The benefit of this trade-off is improved cost transparency and control. 
Execution costs scale primarily with tool invocation volume and domain-
level traffic rather than prompt size or agent reasoning complexity 
alone. This separation enables predictable capacity planning and avoids 
unexpected cost amplification as agent logic evolves.

Overall, the MCP-based model prioritizes controlled cost growth and 
operational clarity over absolute infrastructure minimization, aligning 
well with enterprise-scale budgeting and governance requirements.

 Summary Empirical observations confirm that MCP-based 
architectures provide execution isolation, and favorable cost–performance 
trade-offs under sustained production load.

Latency Characteristics Under Load
The following measurements were collected under controlled 

production-like conditions. Each request includes full conversational 
context, agent reasoning, tool selection, MCP server execution, and 
response synthesis.

End-to-End Response Time
Latency measurements reflect full round-trip execution, including 

agent reasoning, MCP server invocation, downstream tool execution, and 
response generation.

Interpretation End-to-end latency is primarily influenced by agent 
reasoning depth, context size, and the number of MCP tool invocations 
rather than raw LLM inference time alone. For multi-intent queries, 
MCP tools may be executed sequentially or in parallel depending on 
dependency structure and orchestration policy.

Additional latency arises from context accumulation and coordination 
overhead, not from MCP server execution itself. Despite this, observed 
P95 latencies remain stable and bounded, supporting interactive user 
experiences under realistic enterprise workloads.

Conclusion
This paper presented an MCP-based platform architecture for 

building enterprise-scale, agent-driven generative AI systems with 
strong guarantees around latency, correctness, and operational safety. By 
externalizing tools, prompts, and execution logic into domain-specific 
MCP servers, the platform replaces monolithic agent implementations 
with a modular, governed execution model. Agents remain focused on 
reasoning and planning, while MCP servers provide versioned, reusable 
access to tools, resources, and prompts across multiple applications and 
workflows. Explicit context materialization enables deterministic replay, 
partial workflow recovery, and auditable execution traces without coupling 
agent logic to execution timing or infrastructure state. Tail-latency 
governance at P95 and P99 is achieved through bounded orchestration, 
domain isolation, and controlled tool invocation rather than reliance on 
average-case optimization. 

Taken together, these design choices demonstrate that agentic systems 
can meet production reliability and governance requirements while 
preserving flexibility and rapid iteration velocity.

Key Contributions
• An MCP-based execution model that decouples agent reasoning from 

tools, resources, and prompts

• Externalized, versioned tool and prompt management via domain-
specific MCP servers

• Deterministic context persistence enabling replay, recovery, and 
auditability

• Predictable P95/P99 latency governance under multi-agent, multi-
tool workloads

• A cost-aware scaling model aligned with targeted, low-percentage 
traffic deployment 

Final Remark MCP establishes a practical systems abstraction for 
scaling agentic generative AI beyond experimental prototypes. By treating 
tools, prompts, and execution as first-class, governable services, the 
platform bridges the gap between rapid agent innovation and enterprise-
grade reliability, cost control, and compliance.
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