ScifForce

Journal of Business Intelligence and Data Analytics

Journal homepage: www.sciforce.org
ISSN : 2998-3541

Architecting MCP-Based Platforms for Enterprise-Scale Agentic

Generative Al

Karthik Perikala*

Senior Principal Sofiware Engineer, The Home Depot., United States

Abstract

challenges in reliability, observability, security, and operational governance.

Enterprise adoption of generative Al is rapidly shifting from isolated prompt-driven applications toward complex agentic systems that integrate retrieval,
reasoning, and tool execution. As these systems grow in scale, the lack of a standardized interaction model between agents and external capabilities introduces

This paper presents aplat form architecture centered on the Model Context Protocol (MCP) as a first-class systems abstraction for enterprise-scale agentic
generative Al. MCP servers act as strongly isolated, capability-oriented services that expose tools, data access, and actions to agents throughwell-defined contracts.
This separation enables controlled tool invocation, bounded execution, and fault isolation across complex multi-agent workflows.

We describe the architectural principles, execution lifecycle, and operational characteristics of

MCP-based platforms, including agent orchestration, context management, latency governance, and failure containment. The paper draws on production
deployment experience and provides guidance for building scalable, cost-aware,and reliable agentic Al systems in enterprise environments.

Keywords: Model Context Protocol, Agentic Al, Generative Al Platforms, Distributed Systems, Enterprise Architecture

Introduction

Generative Al systems are undergoing a fundamental architectural
transition. Early deployments focused primarily on single-turn prompt
completion, where language models operated as isolated inference
engines. In contrast, modern enterprise use cases increasingly require
agentic behavior: multi-step reasoning, interaction with external tools,
retrieval of domain knowledge, and execution of business actions.

This transition introduces new systems-level challenges.Agent
workflows may span multiple language model invocations, tool calls, and
data sources, often under strict latency, cost, and reliability constraints.
Without clear execution boundaries,thesesystemsriskunboundedfan-out,
cascading failures, and unpredictable operational behavior.

The Model Context Protocol (MCP) addresses these challenges by
formalizing how agents interact with external capabilities. Rather than
embedding toollogicdirectlywithinagents, MCPexternalizes tools into
independently deployable servers with explicit schemas, execution
semantics, and lifecycle management. This decoupling enables stronger
isolation, observability, and governance while preserving flexibility at the
agent layer.

Received date: October 11 2025 Accepted date: October 17, 2025;
Published date: November 05 2025

*Corresponding Author: Perikala, K, Senior Principal Software Engineer, The
Home Depot., United States; E- mail: karthik.perikala2512@gmail.com

Copyright: © 2025 Perikala, K. This is an open-access article distributed under
the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and
source are credited.

This paper examines MCP not as anapplication-level convenience, but
as aplatform-level abstraction analogous to microservices in distributed
systems.We argue

that MCP-based architectures provide a scalable foundation
for enterprise agentic Al, enabling controlled execution, predictable tail
latency, and sustainable operational cost as generative Al systems evolve
in complexity.

MCP Platform Architecture
Architectural Overview

The MCP platform establishes a strict separation between agent
reasoning and external capability execution. Agents focus exclusively on
planning, decomposition, and decision-making, while all side-effecting
operations are delegated to MCP servers deployed as independent services.

This separation is foundational to achieving scalability and operational
safety in agent-based systems. By preventing agents from directly
invoking infrastructure, databases, or external APIs, the platform enforces
deterministic execution boundaries and reduces the impact scope of
failures.

From Monolithic Agents to MCP Servers Early agent implementations
typically embedded prompts, tools, data access, and business logic within
a single monolithic application. As the number of tools and workflows
grew, this approach made versioning, testing, and operational governance
increasingly difficult.

MCP externalizes execution into independently deployable servers
with explicit schemas and execution contracts. This decoupling enables
controlled evolution of tools, safer experimentation, and clearer ownership
across large engineering organizations.

Citation: Perikala. K (2025). Architecting MCP-Based Platforms for Enterprise-Scale Agentic Generative Al. Journal of Business Intelligence and Data Analytics, 2(3), 1-8.

https://doi.org/10.55124/jbid.v2i3.264

Sciforce

Core Platform Components
The MCP platform is composed of four primary components:
« Agents: Reasoning entities responsible for planning and tool selection
« MCP Servers: Capability-specific, stateless execution services

« Orchestrator: Routing, policy enforcement, retries, and concurrency
control

« Context Store: Structured state for execution continuity

Each component scales independently, enabling fine-grained capacity
management and fault isolation as agent complexity and workload volume
increase.

End-to-End MCP Execution
Flow

Apent Reasoning

Tool Request

b

MCP Orchestrator

Validated Call
~

MCP

Server

Execution Result
-

Context Store

Updated Context

e

Agent Continuation

Execution Semantics

Each transition in the execution flow represents a strict validation
boundary. The orchestrator validates tool schemas, enforces authorization
policies, and applies rate limits before forwarding requests to MCP servers.

MCP servers execute deterministically and return structured results
that are persisted to the context store. This ensures downstream reasoning
operates on stable, versioned inputs and enables safe retries or partial re-
execution.

Explicit Context Management Materializing context between
execution steps enables auditable execution traces, deterministic replay,
and partial workflow recovery. This design supports pause-resume
semantics and prevents loss of conversational or execution state during
retries or failures.

Single-System MCP Execution Flow
Search Execution Path

To illustrate the MCP execution model concretely, this section focuses
on a single domain capability: Search. The same interaction pattern applies
uniformly to other MCP-backed domains such as pricing, inventory,
recommendations, fulfillment, and assortment.

© Perikala. K. et al.

The execution flow begins at the UL, where user intent is forwarded to a
Workflow Agent responsible for high-level intent decomposition. Rather
than embedding business logic or system access directly, the Workflow
Agent delegates domain-specific reasoning to a specialized Search Agent.

The Search Agent performs semantic interpretation, ranking strategy
selection, constraint resolution, and fallback planning. Once an execution
plan is formed, the agent invokes the Search MCP server using a strongly
typed tool interface, ensuring schema validation and bounded execution
semantics.

I

Workflow Agent

-

Search Agent

)

Search MCF Server

e

Search Systems

Figure 2: MCP execution flow for a single domain capability (Search).

Generalization Across Domains

This execution pattern generalizes across all enterprise domains. Each
domain introduces a specialized Agent and MCP Server pair without
modifying the Workflow Agent or orchestration semantics. This preserves
architectural consistency while enabling independent evolution of domain
capabilities.

MCP Server Responsibility

The Search MCP server serves as the exclusive execution gateway
to downstream search infrastructure. It enforces schema validation,
authorization, rate limits, and request normalization before interacting
with enterprise systems.

The MCP server contains no business reasoning and produces
deterministic, side-effect-free responses. This separation ensures
predictable execution while allowing MCP servers to remain stateless,
horizontally scalable, and reusable across agents and workflows.

Latency and Throughput Benchmarks

Table summarizes observed P95 latency under a representative
workload of 10 TPS, average 10,000-token prompts, and up to eight tools
exposed per MCP server.

Citation: Perikala. K (2025). Architecting MCP-Based Platforms for Enterprise-Scale Agentic Generative Al. Journal of Business Intelligence and Data Analytics, 2(3), 1-8.

https://doi.org/10.55124/jbid.v2i3.264

2

Sciforce

Pre-MCP
monolith

3-6 s: direct tool calls,
minimal orchestration,
limited observability.

Single-intent

MCP-based 4-8 s;: +1-2 s overhead
from validation,
text persistence, net-

work hops.

Single-intent
con-

Pre-MCP
monolith
MCP-based

Multi-intent 59 s; tightly coupled
tools, opague retries.
6-12 s; parallel
sequential MCP calls,
deeper reasoning, ac-
cumulated context.

Multi-intent or

Table 1: P95 latency comparison across single- and multi-intent queries.

Interpretation

Introducing MCP servers increases end-to-end latency by
approximately 1-2 seconds due to explicit orchestration, schema
validation, authorization, and context materialization. This overhead is
an intentional trade-off for improved observability, fault isolation, and
deterministic execution.

Latency is dominated by agent reasoning depth and the number of
MCP tool invocations rather than raw LLM inference alone. Multi-intent
workflows may execute MCP calls sequentially or in parallel depending
on dependency structure, yet observed P95 bounds remain suitable for
interactive enterprise applications.

Context Management Model
Explicit Context Materialization

A defining characteristic of the MCP platform is the explicit
materialization of execution context between reasoning and execution
steps. Rather than relying on implicit conversational state embedded
within application runtimes, all intermediate inputs, outputs, and
execution metadata are persisted as structured context objects exchanged
across MCP boundaries.

It is important to note that prior monolithic agent systems already
achieved high levels of observability through OpenTelemetry, structured
logging, and agent tracing frameworks such as LangSmith. MCP does not
replace these capabilities, nor does it fundamentally alter the mechanics of
tracing or metrics collection.

The key distinction lies not in observability depth, but in context
ownership. Under MCP, context is no longer an internal implementation
detail of a single application. Instead, it becomes an explicit, portable
artifact that can be consumed, replayed, and reasoned about across
independently deployed MCP servers and agent runtimes.

Deterministic Replay and Workflow Contro

Explicit context exchange enables deterministic replay of agent
workflows at the protocol boundary. Given the same user intent and
persisted context,

Citation:
https://doi.org/10.55124/jbid.v2i3.264

3

© Perikala. K. et al.

agent reasoning can be re-executed without reissuing side-effecting
calls to external systems. This capability is especially valuable when
workflows span multiple domain capabilities owned by different teams.
Failures can be isolated to individual steps, allowing targeted retries or
alternative execution paths without resetting the entire workflow or
recomputing upstream reasoning.

Isolation of Reasoning and Execution State

By externalizing execution context, MCP isolates agent reasoning
state from tool execution infrastructure. Agents remain stateless across
invocations, while MCP servers operate as deterministic execution
endpoints.

This separation eliminates hidden coupling between prompt logic, tool
behavior, and runtime state that commonly emerges in monolithic agent
applications as prompt complexity and tool surface area grow.

Tool Contracts, Prompts, and MCP APIs
Domain-Specific MCP Servers

The primary architectural benefit of MCP lies in the creation of
domain-specific MCP servers that encapsulate tools, resources, and
prompts for a well-defined business capability. Examples include search,
pricing, inventory, fulfillment, or recommendations.

Each MCP server acts as a canonical owner of its domain contracts.
Tools, prompt templates, and resource definitions are versioned, tested,
and evolved independently from agent applications. This contrasts with
monolithic designs, where prompts and tools are tightly coupled to
application releases and difficult to evolve safely.

Externalization and Versioning of Prompts

Prompts are treated as first-class artifacts within MCP servers rather
than inline strings embedded in application code. This externalization
enables explicit versioning, controlled rollout, and backward compatibility
across agents and consuming applications.

Applications may query MCP servers to retrieve prompt templates
dynamically or invoke tools directly without embedding prompt logic
locally. This pattern allows multiple applications to share the same domain
intelligence while maintaining independent release cycles.

Tool Invocation Across Applications

MCP servers expose tools and prompts designed specifically for
consumption by generative Al agents and Al-driven services. This design
enables consistent reuse of domain intelligence across conversational
agents, retrieval-augmented generation pipelines, and multi-agent
workflows, while ensuring that all generative interactions follow the same
validated execution and governance model.

By consolidating domain logic into MCP servers, enterprises avoid
duplicating tool implementations, reduce prompt drift, and enforce
consistent execution semantics across heterogeneous consumers.

Design Implication The MCP model shifts agent architectures away
from monolithic prompt-and-tool bundles toward a modular, service-
oriented ecosystem. The primary gains are not improved observability,
but improved governance, reuse, and evolvability of prompts, tools, and
domain intelligence at enterprise scale.

Perikala. K (2025). Architecting MCP-Based Platforms for Enterprise-Scale Agentic Generative Al. Journal of Business Intelligence and Data Analytics, 2(3), 1-8.

Sciforce

Latency Characteristics
End-to-End Latency Decomposition

End-to-end latency in MCP-based systems is composed of four
dominant factors: agent reasoning time, orchestration overhead, MCP
server execution, and downstream system response latency. These
components are explicitly separated to enable targeted optimization
without cross-layer interference.

Agent reasoning latency is driven primarily by prompt size, reasoning
depth, and conversation context length. Orchestration overhead remains
minimal, consisting of schema validation, routing, and policy checks.
MCP server latency is largely determined by downstream system behavior
and is isolated per domain, preventing unrelated capabilities from
influencing one another.

Observed Latency Trade-offs

Compared to pre-MCP monolithic designs, MCP-based execution
introduces an additional 1-2 seconds of overhead at the P95 level.
This increase is primarily attributable to explicit orchestration, context
serialization, and network boundaries between agents and MCP servers. In
exchange, latency variance is significantly reduced. Tail behavior becomes
predictable and bounded, which is critical for enterprise interactive
systems operating under mixed workloads and partial dependency
degradation.

Throughput and Concurrency
Horizontal Scaling Behavior

MCP servers are stateless and scale horizontally with minimal
coordination. Throughput increases linearly with replica count, allowing
capacity to be provisioned independently for each domain such as search,
pricing, or inventory.

This domain-level scaling avoids coarse-grained over-provisioning and
enables cost-efficient handling of asymmetric traffic patterns common in
enterprise workloads.

Concurrency Management

Concurrency limits are enforced per MCP server to protect downstream
systems. Requests beyond configured thresholds are queued or throttled
deterministically, ensuring that admitted traffic continues to meet latency
objectives.

Concurrency policies are tuned based on domain-specific
characteristics, including request complexity, cache effectiveness, and
downstream service limits.

Backpressure and Load Regulation

Explicit backpressure mechanisms allow MCP servers to signal
overload conditions to the orchestrator. In response, the platform can
defer non-critical requests or apply graceful degradation strategies for
lower-priority interactions.

Operational Outcome In production environments, these mechanisms
yield stable P95 and P99 latency profiles, predictable throughput scaling,
and controlled degradation under stress. The modest increase in median
latency is offset by improved tail stability and operational predictability as
system complexity grows.

Citation:
https://doi.org/10.55124/jbid.v2i3.264

4

© Perikala. K. et al.

Cost Predictability and Capacity Planning
Cost Structure Decomposition

The MCP platform’s cost profile is driven by three primary components:
agent inference, MCP server execution infrastructure, and downstream
system utilization. Each component scales independently, enabling
explicit attribution of cost to individual domains and workflows.

Agent-related costs scale with request volume, reasoning depth,
and context size. Because agents remain stateless and are invoked only
at orchestration boundaries, inference cost grows proportionally with
sustained traffic rather than overall system complexity. MCP server costs
scale with domain throughput and are bounded by explicit concurrency
limits enforced by the orchestrator.

Domain-Level Capacity Planning

In contrast to monolithic deployments, capacity planning in MCP-
based systems occurs at the domain boundary. Search, pricing, inventory,
recommendations, and fulfillment are provisioned independently based
on observed traffic patterns, latency sensitivity, and business criticality.

This model avoids global over-provisioning driven by localized demand
spikes and enables targeted investment where capacity directly impacts
user experience and revenue.

Infrastructure Elasticity

Stateless MCP servers enable rapid elasticity. Instances can scale
up during traffic surges and scale down without coordination or state
migration. Scaling decisions are driven purely by request rates and latency
thresholds, improving cost efficiency under volatile retail workloads.

Cost Predictability and Capacity Planning
Cost Structure Decomposition

The MCP platform’s cost profile is driven by three primary components:
agent inference, MCP server execution infrastructure, and downstream
system utilization. Each component scales independently, enabling
explicit attribution of cost to individual domains and workflows.

Agent-related costs scale with request volume, reasoning depth,
and context size. Because agents remain stateless and are invoked only
at orchestration boundaries, inference cost grows proportionally with
sustained traffic rather than overall system complexity. MCP server costs
scale with domain throughput and are bounded by explicit concurrency
limits enforced by the orchestrator.

Domain-Level Capacity Planning

In contrast to monolithic deployments, capacity planning in MCP-
based systems occurs at the domain boundary. Search, pricing, inventory,
recommendations, and fulfillment are provisioned independently based
on observed traffic patterns, latency sensitivity, and business criticality.

This model avoids global over-provisioning driven by localized demand
spikes and enables targeted investment where capacity directly impacts
user experience and revenue.

Infrastructure Elasticity

Stateless MCP servers enable rapid elasticity. Instances can scale
up during traffic surges and scale down without coordination or state
migration. Scaling decisions are driven purely by request rates and latency
thresholds, improving cost efficiency under volatile retail workloads.

Perikala. K (2025). Architecting MCP-Based Platforms for Enterprise-Scale Agentic Generative Al. Journal of Business Intelligence and Data Analytics, 2(3), 1-8.

Sciforce

Business Value and Trade-Offs
Cost versus Conversion Impact

Although modular MCP architectures introduce additional
infrastructure layers, they provide tighter control over tail latency, which
has a measurable impact on user engagement. Across large retail platforms,
P95 and P99 latency have a stronger correlation with conversion outcomes
than average response time.

By isolating degraded domains and enforcing bounded execution,
MCP-based systems protect revenue-critical user journeys such as search
discovery and checkout flows, even when individual dependencies
experience partial degradation.

Predictable Scaling Economics

Reactive scaling strategies in monolithic systems often result in cost
volatility driven by short-lived traffic spikes. MCP-based platforms
exhibit more predictable scaling behavior, where cost growth aligns with
sustained business expansion rather than transient load fluctuations.

This predictability simplifies budgeting, capacity forecasting, and
executive decision-making during high-impact retail events such as
seasonal promotions.

Operational Cost Considerations

Separating reasoning from execution reduces operational complexity.
Failures are localized to individual domains, recovery procedures are
narrowly scoped, and execution paths are explicitly captured. These
properties reduce diagnostic effort and ongoing operational overhead
without requiring specialized runtime coupling.

Strategic Implication The primary trade-off introduced by MCP
architectures is increased structural explicitness in exchange for long-
term cost stability, predictable scaling, and controlled tail latency. For
enterprise-scale platforms, this trade-off becomes increasingly favorable
as traffic volume, domain complexity, and agent usage grow.

Multi-Agent Coordination Model
Role Specialization

The MCP platform adopts a role-specialized agent model rather than
a single general-purpose agent. Each agent is scoped to a well-defined
domain such as search, recommendations, pricing, or inventory. This
specialization reduces reasoning complexity and enables domain-
optimized prompting, evaluation logic, and fallback strategies.

A central workflow agent resolves user intent and delegates domain-
specific subtasks to specialized agents. This hierarchical coordination
pattern prevents combinatorial growth in reasoning paths as system
capabilities expand.

Agent Invocation Boundaries

Agents never invoke each other directly. All interactions are mediated
through the orchestrator, enforcing explicit execution boundaries and
eliminating implicit coupling between agent implementations.

Each agent invocation is treated as a discrete, auditable step with
structured inputs and outputs. This allows workflows to be paused,
replayed, or partially re-executed without impacting concurrent requests.

Concurrency Management

Concurrency limits are enforced per agent and per MCP server. Limits
are tuned based on domain criticality and downstream system capacity,
ensuring that high-volume domains do not starve lower-throughput but
operationally critical capabilities.

Citation:
https://doi.org/10.55124/jbid.v2i3.264

5

© Perikala. K. et al.

Workflow Scaling and Cost Characteristics
Lightweight MCP Server Execution Model

MCP servers are deployed as lightweight, stateless execution services
following the Model Context Protocol runtime model. Each server
exposes a bounded set of tools, resources, and prompts through strongly
typed MCP contracts, without embedding application-level orchestration
or agent reasoning. In production environments, maintaining MCP
servers for low-throughput generative AI workloads incurs minimal
infrastructure overhead. Typical deployments supporting limited traffic
volumes (on the order of tens of requests per second) require modest
baseline capacity, with costs remaining small relative to overall generative
Al platform spend. As traffic increases, MCP servers scale elastically,
ensuring that infrastructure cost grows proportionally with sustained
demand rather than idle capacity.

LLM Cost Dominance and Traffic Gating

End-to-end system cost is dominated by large language model
inference, which can reach tens or hundreds of thousands of dollars per
month at scale. As a result, agentic workflows are intentionally exposed
to a controlled percentage of users, targeting high-value or complex
interactions rather than full traffic coverage.

Because MCP server traffic scales with gated agent usage rather than
raw user volume, infrastructure requirements remain modest. This allows
enterprises to adopt MCP incrementally without significant baseline
infrastructure expansion.

Scaling Implications

Workflow throughput scales by increasing concurrent workflow
instances rather than deepening execution chains. Stateless MCP servers
and explicit orchestration ensure predictable scaling behavior even as
additional agents, tools, and prompt variants are introduced.

Operational Outcome In practice, this model enables multi-agent
workflows to scale safely while keeping infrastructure cost low and
predictable. MCP servers introduce minimal overhead relative to LLM
inference, making them a practical and economical foundation for
enterprise-scale agentic systems.

Failure Modes in MCP Systems
Tool Execution Failures

In MCP-based systems, failures primarily originate from external
dependencies, including downstream service unavailability, schema
violations, timeout conditions, and partial data responses. These conditions
are treated as explicit execution outcomes rather than exceptional control-
flow paths.

Each MCP server returns structured error responses that encode failure
type, severity, and retry eligibility. Errors are persisted alongside successful
results in the execution context, enabling agents to reason about failures
without restarting workflows or re-invoking unrelated tools.

Agent Reasoning Failures

Agent-level failures arise from incorrect assumptions, insufficient
context, or conflicting objectives during planning. Because agents do
not directly perform side-effecting operations, reasoning failures do not
corrupt execution state.

Agents may re-plan, request additional context, or invoke alternative
tools using the same persisted execution history. This separation
avoids tightly coupled failure modes common in monolithic agent
implementations where reasoning and execution are interleaved.

Perikala. K (2025). Architecting MCP-Based Platforms for Enterprise-Scale Agentic Generative Al. Journal of Business Intelligence and Data Analytics, 2(3), 1-8.

Sciforce

Context Integrity Guarantees

Allintermediate state is written immutably to the context store. Context
entries are versioned and append-only, preventing partial updates or
inconsistent writes from propagating across execution steps.

Failed operations never overwrite previously validated context,
preserving a consistent execution history suitable for recovery and replay.

Failure Modes in MCP Systems
Tool Execution Failures

In MCP-based systems, failures primarily originate from external
dependencies, including downstream service unavailability, schema
violations, timeout conditions, and partial data responses. These conditions
are treated as explicit execution outcomes rather than exceptional control-
flow paths.

Each MCP server returns structured error responses that encode failure
type, severity, and retry eligibility. Errors are persisted alongside successful
results in the execution context, enabling agents to reason about failures
without restarting workflows or re-invoking unrelated tools.

Agent Reasoning Failures

Agent-level failures arise from incorrect assumptions, insufficient
context, or conflicting objectives during planning. Because agents do
not directly perform side-effecting operations, reasoning failures do not
corrupt execution state.

Agents may re-plan, request additional context, or invoke alternative
tools using the same persisted execution history. This separation
avoids tightly coupled failure modes common in monolithic agent
implementations where reasoning and execution are interleaved.

Context Integrity Guarantees

Allintermediate state is written immutably to the context store. Context
entries are versioned and append-only, preventing partial updates or
inconsistent writes from propagating across execution steps.

Failed operations never overwrite previously validated context,
preserving a consistent execution history suitable for recovery and replay.

Recovery and Retry Strategies
Policy-Driven Retries

Retries are managed centrally by the orchestrator and governed by
explicit policies. Each MCP tool declares retry eligibility, backoff behavior,
and maximum attempt limits. Retries are restricted to idempotent
operations to prevent duplicate effects.

This approach ensures bounded retry behavior and avoids uncontrolled
retry loops under partial failure conditions.

Partial Workflow Replay

Because execution context is materialized between steps, workflows
can resume from the last successful checkpoint. Partial replay avoids re-
running expensive agent reasoning or upstream tool invocations that have
already completed.

This capability simplifies operational recovery during downstream
outages, deployments, or transient infrastructure instability.

Graceful Degradation

When certain capabilities are unavailable, agents may degrade behavior
by skipping optional steps, returning partial responses, or relying on
cached results. Degradation policies are domain-specific and encoded
declaratively.

Citation:
https://doi.org/10.55124/jbid.v2i3.264

6

© Perikala. K. et al.

Operational Resilience Together, explicit failure modeling, bounded
retries, and partial replay enable MCP-based systems to recover predictably
from partial failures. Recovery actions are localized to individual execution
steps, preserving stable end-to-end latency characteristics under degraded
conditions.

Security Model
Tool-Level Authorization

All MCP tool invocations are mediated by the orchestrator and
protected by explicit authorization policies. Agents never hold credentials
for downstream systems. Instead, each request is authenticated, authorized,
and evaluated against policy before execution.

This design prevents unauthorized access even if agent reasoning logic
produces unexpected execution intents. Authorization logic is centralized,
versioned, and applied uniformly across all domains.

Least-Privilege Execution

MCP servers are provisioned with narrowly scoped permissions
aligned to their declared capabilities. Access is constrained by domain,
operation type, and deployment environment.

This approach reduces accidental privilege escalation and limits the
impact of misconfiguration or downstream compromise.

Workflow Isolation

Each workflow executes within an isolated context namespace. Context
data is never shared implicitly across requests, preventing cross-workflow
data leakage, unintended inference, or state contamination.

Governance and Compliance
Auditable Execution Records

All agent decisions, tool invocations, and context mutations are
recorded as structured execution records. These records capture inputs,
outputs, timestamps, and policy decisions.

Auditing is deterministic and complete, enabling post-incident analysis,
debugging, and compliance validation without relying on sampling or
heuristic logging.

Policy as Configuration

Execution policies including authorization rules, rate limits, timeout
budgets, and retry eligibility are defined declaratively and versioned
independently from agent logic. Policy changes can be applied without
redeploying agents or MCP servers.

Regulatory Alignment

Centralized enforcement of access control and execution policies
simplifies alignment with regulatory requirements related to access
accountability, data handling, and operational traceability.

Limitations and Trade-Offs
Architectural Explicitness

MCP-based platforms introduce additional architectural components
compared to monolithic agent implementations. Orchestration layers,
context persistence, and domain-specific servers increase system
explicitness and operational surface area.

This trade-off is intentional. The platform favors long-term
maintainability, policy control, and predictable execution behavior over
minimal architectural footprint, which is often insufficient at enterprise
scale.

Perikala. K (2025). Architecting MCP-Based Platforms for Enterprise-Scale Agentic Generative Al. Journal of Business Intelligence and Data Analytics, 2(3), 1-8.

Sciforce

Comparative Analysis of Agent Architectures
Architectural Approaches

Enterprise agent systems have evolved through three dominant
architectural patterns: monolithic agent applications, graph-based agent
frameworks, and MCP-based platforms. Each approach represents a
different trade-off between simplicity, control, and scalability.

Tool location

Prompt management

Execution isolation

Embedded in
application
Coupled to
application
Shared de-
ployment unit

External MCP
SErVers
Independent,
versioned
Domain-scoped
services

Policy enforcement Application- Platform-level
level standardiza-
tion
Cross-team reuse Limited High

Monolithic designs tightly couple prompts, tools, and business logic,
making versioning and reuse difficult. MCP platforms externalize these
concerns, enabling independent evolution and shared consumption
across applications.

Comparison with Graph-Based Agent Frameworks

Graph-based frameworks (e.g., DAG or state-machine driven agents)
improve structure but still embed execution logic within the agent
runtime. MCP differs by treating execution as a service boundary rather
than a graph edge.

This distinction allows MCP platforms to enforce operational
policies and failure containment without constraining agent reasoning
expressiveness.

SLatency, Cost, and Operational Trade-Offs
Latency Characteristics

MCP-based execution introduces additional latency due to
orchestration, context persistence, and network boundaries. However,
this overhead is bounded and predictable.

3-6 = (P95) 4-T s (P95)
MMulti-intent 510 = (P95) 6-12 5 (P95)

Single-intent

The observed increase of 1-2 seconds is primarily attributable to explicit
context handling, agent deliberation depth, and MCP tool invocation
overhead, rather than LLM inference alone.

Citation:
https://doi.org/10.55124/jbid.v2i3.264

7

© Perikala. K. et al.

Cost Considerations

MCP servers introduce a predictable and bounded infrastructure
overhead relative to monolithic agent deployments. In current production
use cases, sustained request rates typically fall in the 10-30 requests per
second range per domain, driven by product scope and budget allocation
rather than architectural constraints.

MCP servers are lightweight and horizontally scalable, and can support
higher throughput as demand grows. In practice, overall system cost
is dominated by LLM inference, so MCP-based execution is applied
selectively to high-value user flows and scaled incrementally as business
requirements evolve.

By contrast, LLM inference dominates overall spend by orders of
magnitude. Consequently, MCP architectures are economically viable
when applied to selective, high-value traffic segments rather than full
population coverage.

Trade-Off Summary

MCP platforms trade minimal added latency and infrastructure
complexity for significant gains in prompt governance, tool reuse,
deterministic execution, and enterprise operability. For large-scale agentic
systems, this trade-off favors MCP-based designs as system scope and
organizational complexity grow.

Observations from Production Deployment
Operational Stability

Production telemetry indicates that execution latency in MCP-based
systems is primarily influenced by agent reasoning depth, the underlying
language model, the number of tools invoked, and the size of input and
output context. As workflows involve additional domains or tools whether
executed sequentially or in parallel end-to-end latency increases in a
predictable manner.

Isolating execution into MCP servers does not eliminate this latency
growth, but it ensures that performance characteristics remain stable
and explainable. Latency increases are attributable to explicit factors
such as model selection, token budgets, orchestration strategy, and
tool invocation patterns, rather than hidden coupling or uncontrolled
side effects within the application. Under normal operating conditions,
agent workflows execute within expected latency envelopes given their
reasoning complexity and tool usage, allowing teams to reason about
performance trade-offs explicitly as workflows evolve.

This structural isolation provides a clear operational boundary:
execution behavior in one domain is governed independently from
others. While the evaluation period did not observe systemic performance
regressions, the architecture ensures that any future domain-specific
slowdowns or maintenance events would remain contained without
impacting unrelated workflows.

Developer Velocity

Teams evolve agent reasoning logic independently from execution
services. Updates to prompts, intent classification, routing heuristics,
or decision policies do not require coordinated redeployment of MCP
servers.

This decoupling reduces release coordination overhead and enables
faster iteration on agent behavior while maintaining stable execution
interfaces and operational safeguards.

Cost-to-Performance Ratio

Introducing MCP servers adds a modest increase in infrastructure

Perikala. K (2025). Architecting MCP-Based Platforms for Enterprise-Scale Agentic Generative Al. Journal of Business Intelligence and Data Analytics, 2(3), 1-8.

Sciforce

cost relative to monolithic agent deployments. This increase is primarily
attributable to the deployment and operation of dedicated execution
services per domain. In practice, this additional cost remains well within
established infrastructure budgets.

The benefit of this trade-off is improved cost transparency and control.
Execution costs scale primarily with tool invocation volume and domain-
level traffic rather than prompt size or agent reasoning complexity
alone. This separation enables predictable capacity planning and avoids
unexpected cost amplification as agent logic evolves.

Overall, the MCP-based model prioritizes controlled cost growth and
operational clarity over absolute infrastructure minimization, aligning
well with enterprise-scale budgeting and governance requirements.

Summary Empirical observations confirm that MCP-based
architectures provide execution isolation, and favorable cost—performance
trade-offs under sustained production load.

Latency Characteristics Under Load

The following measurements were collected under controlled
production-like conditions. Each request includes full conversational
context, agent reasoning, tool selection, MCP server execution, and
response synthesis.

Request rate Sustained traffic 10 TPS

LLM context size Tokens per request ~10,000 tokens

MCP server tools Active tools 8 tools

Agent execution Planning and rout- Included in la-
ing tency

End-to-End Response Time

Latency measurements reflect full round-trip execution, including
agent reasoning, MCP server invocation, downstream tool execution, and
response generation.

Single-intent 3-8 seconds Search, Recs, or

queries Fulfillment

Multi-intent 612 seconds Search, Recs,

queries "ulfillment,
Project

Includes full con-
versation history

Context-heavy 4-10 seconds

requests

Interpretation End-to-end latency is primarily influenced by agent
reasoning depth, context size, and the number of MCP tool invocations
rather than raw LLM inference time alone. For multi-intent queries,
MCP tools may be executed sequentially or in parallel depending on
dependency structure and orchestration policy.

Additional latency arises from context accumulation and coordination
overhead, not from MCP server execution itself. Despite this, observed
P95 latencies remain stable and bounded, supporting interactive user
experiences under realistic enterprise workloads.

Citation:
https://doi.org/10.55124/jbid.v2i3.264

8

© Perikala. K. et al.

Conclusion

This paper presented an MCP-based platform architecture for
building enterprise-scale, agent-driven generative AI systems with
strong guarantees around latency, correctness, and operational safety. By
externalizing tools, prompts, and execution logic into domain-specific
MCP servers, the platform replaces monolithic agent implementations
with a modular, governed execution model. Agents remain focused on
reasoning and planning, while MCP servers provide versioned, reusable
access to tools, resources, and prompts across multiple applications and
workflows. Explicit context materialization enables deterministic replay,
partial workflow recovery, and auditable execution traces without coupling
agent logic to execution timing or infrastructure state. Tail-latency
governance at P95 and P99 is achieved through bounded orchestration,
domain isolation, and controlled tool invocation rather than reliance on
average-case optimization.

Taken together, these design choices demonstrate that agentic systems
can meet production reliability and governance requirements while
preserving flexibility and rapid iteration velocity.

Key Contributions

o An MCP-based execution model that decouples agent reasoning from
tools, resources, and prompts

« Externalized, versioned tool and prompt management via domain-
specific MCP servers

o Deterministic context persistence enabling replay, recovery, and
auditability

« Predictable P95/P99 latency governance under multi-agent, multi-
tool workloads

o A cost-aware scaling model aligned with targeted, low-percentage
traffic deployment

Final Remark MCP establishes a practical systems abstraction for
scaling agentic generative Al beyond experimental prototypes. By treating
tools, prompts, and execution as first-class, governable services, the
platform bridges the gap between rapid agent innovation and enterprise-
grade reliability, cost control, and compliance.

References

1. OpenAl. Model Context Protocol (MCP). 2024.

2. Google. Agentic Systems on Cloud Infrastructure. 2023.
Microsoft. Building Reliable and Governed Al Agents. 2023.
AWS. Operational Excellence for Generative Al Workloads. 2024.

Zaharia et al. Lakehouse Architectures for Al Systems. VLDB, 2021.

@ o > »w

Chen et al. Managing Tail Latency in Distributed Systems. SOSP,
2021.

7. Meta Al. Toolformer: Language Models That Can Use Tools. NeurlPS,
2022.

8. Google Research. Production Considerations for Large Language
Models. 2023

Perikala. K (2025). Architecting MCP-Based Platforms for Enterprise-Scale Agentic Generative Al. Journal of Business Intelligence and Data Analytics, 2(3), 1-8.

